审查视图

vendor/github.com/golang/snappy/encode_other.go 8.0 KB
唐旭辉 authored
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
// Copyright 2016 The Snappy-Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// +build !amd64 appengine !gc noasm

package snappy

func load32(b []byte, i int) uint32 {
	b = b[i : i+4 : len(b)] // Help the compiler eliminate bounds checks on the next line.
	return uint32(b[0]) | uint32(b[1])<<8 | uint32(b[2])<<16 | uint32(b[3])<<24
}

func load64(b []byte, i int) uint64 {
	b = b[i : i+8 : len(b)] // Help the compiler eliminate bounds checks on the next line.
	return uint64(b[0]) | uint64(b[1])<<8 | uint64(b[2])<<16 | uint64(b[3])<<24 |
		uint64(b[4])<<32 | uint64(b[5])<<40 | uint64(b[6])<<48 | uint64(b[7])<<56
}

// emitLiteral writes a literal chunk and returns the number of bytes written.
//
// It assumes that:
//	dst is long enough to hold the encoded bytes
//	1 <= len(lit) && len(lit) <= 65536
func emitLiteral(dst, lit []byte) int {
	i, n := 0, uint(len(lit)-1)
	switch {
	case n < 60:
		dst[0] = uint8(n)<<2 | tagLiteral
		i = 1
	case n < 1<<8:
		dst[0] = 60<<2 | tagLiteral
		dst[1] = uint8(n)
		i = 2
	default:
		dst[0] = 61<<2 | tagLiteral
		dst[1] = uint8(n)
		dst[2] = uint8(n >> 8)
		i = 3
	}
	return i + copy(dst[i:], lit)
}

// emitCopy writes a copy chunk and returns the number of bytes written.
//
// It assumes that:
//	dst is long enough to hold the encoded bytes
//	1 <= offset && offset <= 65535
//	4 <= length && length <= 65535
func emitCopy(dst []byte, offset, length int) int {
	i := 0
	// The maximum length for a single tagCopy1 or tagCopy2 op is 64 bytes. The
	// threshold for this loop is a little higher (at 68 = 64 + 4), and the
	// length emitted down below is is a little lower (at 60 = 64 - 4), because
	// it's shorter to encode a length 67 copy as a length 60 tagCopy2 followed
	// by a length 7 tagCopy1 (which encodes as 3+2 bytes) than to encode it as
	// a length 64 tagCopy2 followed by a length 3 tagCopy2 (which encodes as
	// 3+3 bytes). The magic 4 in the 64±4 is because the minimum length for a
	// tagCopy1 op is 4 bytes, which is why a length 3 copy has to be an
	// encodes-as-3-bytes tagCopy2 instead of an encodes-as-2-bytes tagCopy1.
	for length >= 68 {
		// Emit a length 64 copy, encoded as 3 bytes.
		dst[i+0] = 63<<2 | tagCopy2
		dst[i+1] = uint8(offset)
		dst[i+2] = uint8(offset >> 8)
		i += 3
		length -= 64
	}
	if length > 64 {
		// Emit a length 60 copy, encoded as 3 bytes.
		dst[i+0] = 59<<2 | tagCopy2
		dst[i+1] = uint8(offset)
		dst[i+2] = uint8(offset >> 8)
		i += 3
		length -= 60
	}
	if length >= 12 || offset >= 2048 {
		// Emit the remaining copy, encoded as 3 bytes.
		dst[i+0] = uint8(length-1)<<2 | tagCopy2
		dst[i+1] = uint8(offset)
		dst[i+2] = uint8(offset >> 8)
		return i + 3
	}
	// Emit the remaining copy, encoded as 2 bytes.
	dst[i+0] = uint8(offset>>8)<<5 | uint8(length-4)<<2 | tagCopy1
	dst[i+1] = uint8(offset)
	return i + 2
}

// extendMatch returns the largest k such that k <= len(src) and that
// src[i:i+k-j] and src[j:k] have the same contents.
//
// It assumes that:
//	0 <= i && i < j && j <= len(src)
func extendMatch(src []byte, i, j int) int {
	for ; j < len(src) && src[i] == src[j]; i, j = i+1, j+1 {
	}
	return j
}

func hash(u, shift uint32) uint32 {
	return (u * 0x1e35a7bd) >> shift
}

// encodeBlock encodes a non-empty src to a guaranteed-large-enough dst. It
// assumes that the varint-encoded length of the decompressed bytes has already
// been written.
//
// It also assumes that:
//	len(dst) >= MaxEncodedLen(len(src)) &&
// 	minNonLiteralBlockSize <= len(src) && len(src) <= maxBlockSize
func encodeBlock(dst, src []byte) (d int) {
	// Initialize the hash table. Its size ranges from 1<<8 to 1<<14 inclusive.
	// The table element type is uint16, as s < sLimit and sLimit < len(src)
	// and len(src) <= maxBlockSize and maxBlockSize == 65536.
	const (
		maxTableSize = 1 << 14
		// tableMask is redundant, but helps the compiler eliminate bounds
		// checks.
		tableMask = maxTableSize - 1
	)
	shift := uint32(32 - 8)
	for tableSize := 1 << 8; tableSize < maxTableSize && tableSize < len(src); tableSize *= 2 {
		shift--
	}
	// In Go, all array elements are zero-initialized, so there is no advantage
	// to a smaller tableSize per se. However, it matches the C++ algorithm,
	// and in the asm versions of this code, we can get away with zeroing only
	// the first tableSize elements.
	var table [maxTableSize]uint16

	// sLimit is when to stop looking for offset/length copies. The inputMargin
	// lets us use a fast path for emitLiteral in the main loop, while we are
	// looking for copies.
	sLimit := len(src) - inputMargin

	// nextEmit is where in src the next emitLiteral should start from.
	nextEmit := 0

	// The encoded form must start with a literal, as there are no previous
	// bytes to copy, so we start looking for hash matches at s == 1.
	s := 1
	nextHash := hash(load32(src, s), shift)

	for {
		// Copied from the C++ snappy implementation:
		//
		// Heuristic match skipping: If 32 bytes are scanned with no matches
		// found, start looking only at every other byte. If 32 more bytes are
		// scanned (or skipped), look at every third byte, etc.. When a match
		// is found, immediately go back to looking at every byte. This is a
		// small loss (~5% performance, ~0.1% density) for compressible data
		// due to more bookkeeping, but for non-compressible data (such as
		// JPEG) it's a huge win since the compressor quickly "realizes" the
		// data is incompressible and doesn't bother looking for matches
		// everywhere.
		//
		// The "skip" variable keeps track of how many bytes there are since
		// the last match; dividing it by 32 (ie. right-shifting by five) gives
		// the number of bytes to move ahead for each iteration.
		skip := 32

		nextS := s
		candidate := 0
		for {
			s = nextS
			bytesBetweenHashLookups := skip >> 5
			nextS = s + bytesBetweenHashLookups
			skip += bytesBetweenHashLookups
			if nextS > sLimit {
				goto emitRemainder
			}
			candidate = int(table[nextHash&tableMask])
			table[nextHash&tableMask] = uint16(s)
			nextHash = hash(load32(src, nextS), shift)
			if load32(src, s) == load32(src, candidate) {
				break
			}
		}

		// A 4-byte match has been found. We'll later see if more than 4 bytes
		// match. But, prior to the match, src[nextEmit:s] are unmatched. Emit
		// them as literal bytes.
		d += emitLiteral(dst[d:], src[nextEmit:s])

		// Call emitCopy, and then see if another emitCopy could be our next
		// move. Repeat until we find no match for the input immediately after
		// what was consumed by the last emitCopy call.
		//
		// If we exit this loop normally then we need to call emitLiteral next,
		// though we don't yet know how big the literal will be. We handle that
		// by proceeding to the next iteration of the main loop. We also can
		// exit this loop via goto if we get close to exhausting the input.
		for {
			// Invariant: we have a 4-byte match at s, and no need to emit any
			// literal bytes prior to s.
			base := s

			// Extend the 4-byte match as long as possible.
			//
			// This is an inlined version of:
			//	s = extendMatch(src, candidate+4, s+4)
			s += 4
			for i := candidate + 4; s < len(src) && src[i] == src[s]; i, s = i+1, s+1 {
			}

			d += emitCopy(dst[d:], base-candidate, s-base)
			nextEmit = s
			if s >= sLimit {
				goto emitRemainder
			}

			// We could immediately start working at s now, but to improve
			// compression we first update the hash table at s-1 and at s. If
			// another emitCopy is not our next move, also calculate nextHash
			// at s+1. At least on GOARCH=amd64, these three hash calculations
			// are faster as one load64 call (with some shifts) instead of
			// three load32 calls.
			x := load64(src, s-1)
			prevHash := hash(uint32(x>>0), shift)
			table[prevHash&tableMask] = uint16(s - 1)
			currHash := hash(uint32(x>>8), shift)
			candidate = int(table[currHash&tableMask])
			table[currHash&tableMask] = uint16(s)
			if uint32(x>>8) != load32(src, candidate) {
				nextHash = hash(uint32(x>>16), shift)
				s++
				break
			}
		}
	}

emitRemainder:
	if nextEmit < len(src) {
		d += emitLiteral(dst[d:], src[nextEmit:])
	}
	return d
}