helper.go 72.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682
// Copyright (c) 2012-2018 Ugorji Nwoke. All rights reserved.
// Use of this source code is governed by a MIT license found in the LICENSE file.

package codec

// Contains code shared by both encode and decode.

// Some shared ideas around encoding/decoding
// ------------------------------------------
//
// If an interface{} is passed, we first do a type assertion to see if it is
// a primitive type or a map/slice of primitive types, and use a fastpath to handle it.
//
// If we start with a reflect.Value, we are already in reflect.Value land and
// will try to grab the function for the underlying Type and directly call that function.
// This is more performant than calling reflect.Value.Interface().
//
// This still helps us bypass many layers of reflection, and give best performance.
//
// Containers
// ------------
// Containers in the stream are either associative arrays (key-value pairs) or
// regular arrays (indexed by incrementing integers).
//
// Some streams support indefinite-length containers, and use a breaking
// byte-sequence to denote that the container has come to an end.
//
// Some streams also are text-based, and use explicit separators to denote the
// end/beginning of different values.
//
// Philosophy
// ------------
// On decode, this codec will update containers appropriately:
//    - If struct, update fields from stream into fields of struct.
//      If field in stream not found in struct, handle appropriately (based on option).
//      If a struct field has no corresponding value in the stream, leave it AS IS.
//      If nil in stream, set value to nil/zero value.
//    - If map, update map from stream.
//      If the stream value is NIL, set the map to nil.
//    - if slice, try to update up to length of array in stream.
//      if container len is less than stream array length,
//      and container cannot be expanded, handled (based on option).
//      This means you can decode 4-element stream array into 1-element array.
//
// ------------------------------------
// On encode, user can specify omitEmpty. This means that the value will be omitted
// if the zero value. The problem may occur during decode, where omitted values do not affect
// the value being decoded into. This means that if decoding into a struct with an
// int field with current value=5, and the field is omitted in the stream, then after
// decoding, the value will still be 5 (not 0).
// omitEmpty only works if you guarantee that you always decode into zero-values.
//
// ------------------------------------
// We could have truncated a map to remove keys not available in the stream,
// or set values in the struct which are not in the stream to their zero values.
// We decided against it because there is no efficient way to do it.
// We may introduce it as an option later.
// However, that will require enabling it for both runtime and code generation modes.
//
// To support truncate, we need to do 2 passes over the container:
//   map
//   - first collect all keys (e.g. in k1)
//   - for each key in stream, mark k1 that the key should not be removed
//   - after updating map, do second pass and call delete for all keys in k1 which are not marked
//   struct:
//   - for each field, track the *typeInfo s1
//   - iterate through all s1, and for each one not marked, set value to zero
//   - this involves checking the possible anonymous fields which are nil ptrs.
//     too much work.
//
// ------------------------------------------
// Error Handling is done within the library using panic.
//
// This way, the code doesn't have to keep checking if an error has happened,
// and we don't have to keep sending the error value along with each call
// or storing it in the En|Decoder and checking it constantly along the way.
//
// We considered storing the error is En|Decoder.
//   - once it has its err field set, it cannot be used again.
//   - panicing will be optional, controlled by const flag.
//   - code should always check error first and return early.
//
// We eventually decided against it as it makes the code clumsier to always
// check for these error conditions.
//
// ------------------------------------------
// We use sync.Pool only for the aid of long-lived objects shared across multiple goroutines.
// Encoder, Decoder, enc|decDriver, reader|writer, etc do not fall into this bucket.
//
// Also, GC is much better now, eliminating some of the reasons to use a shared pool structure.
// Instead, the short-lived objects use free-lists that live as long as the object exists.
//
// ------------------------------------------
// Performance is affected by the following:
//    - Bounds Checking
//    - Inlining
//    - Pointer chasing
// This package tries hard to manage the performance impact of these.
//
// ------------------------------------------
// To alleviate performance due to pointer-chasing:
//    - Prefer non-pointer values in a struct field
//    - Refer to these directly within helper classes
//      e.g. json.go refers directly to d.d.decRd
//
// We made the changes to embed En/Decoder in en/decDriver,
// but we had to explicitly reference the fields as opposed to using a function
// to get the better performance that we were looking for.
// For example, we explicitly call d.d.decRd.fn() instead of d.d.r().fn().
//
// ------------------------------------------
// Bounds Checking
//    - Allow bytesDecReader to incur "bounds check error", and
//      recover that as an io.EOF.
//      This allows the bounds check branch to always be taken by the branch predictor,
//      giving better performance (in theory), while ensuring that the code is shorter.
//
// ------------------------------------------
// Escape Analysis
//    - Prefer to return non-pointers if the value is used right away.
//      Newly allocated values returned as pointers will be heap-allocated as they escape.
//
// Prefer functions and methods that
//    - take no parameters and
//    - return no results and
//    - do not allocate.
// These are optimized by the runtime.
// For example, in json, we have dedicated functions for ReadMapElemKey, etc
// which do not delegate to readDelim, as readDelim takes a parameter.
// The difference in runtime was as much as 5%.

import (
	"bytes"
	"encoding"
	"encoding/binary"
	"errors"
	"fmt"
	"io"
	"math"
	"reflect"
	"sort"
	"strconv"
	"strings"
	"sync"
	"sync/atomic"
	"time"
)

const (
	// rvNLen is the length of the array for readn or writen calls
	rwNLen = 7

	// scratchByteArrayLen = 64
	// initCollectionCap   = 16 // 32 is defensive. 16 is preferred.

	// Support encoding.(Binary|Text)(Unm|M)arshaler.
	// This constant flag will enable or disable it.
	supportMarshalInterfaces = true

	// for debugging, set this to false, to catch panic traces.
	// Note that this will always cause rpc tests to fail, since they need io.EOF sent via panic.
	recoverPanicToErr = true

	// arrayCacheLen is the length of the cache used in encoder or decoder for
	// allowing zero-alloc initialization.
	// arrayCacheLen = 8

	// size of the cacheline: defaulting to value for archs: amd64, arm64, 386
	// should use "runtime/internal/sys".CacheLineSize, but that is not exposed.
	cacheLineSize = 64

	wordSizeBits = 32 << (^uint(0) >> 63) // strconv.IntSize
	wordSize     = wordSizeBits / 8

	// so structFieldInfo fits into 8 bytes
	maxLevelsEmbedding = 14

	// xdebug controls whether xdebugf prints any output
	xdebug = true
)

var (
	oneByteArr    [1]byte
	zeroByteSlice = oneByteArr[:0:0]

	codecgen bool

	panicv panicHdl

	refBitset    bitset32
	isnilBitset  bitset32
	scalarBitset bitset32
)

var (
	errMapTypeNotMapKind     = errors.New("MapType MUST be of Map Kind")
	errSliceTypeNotSliceKind = errors.New("SliceType MUST be of Slice Kind")
)

var pool4tiload = sync.Pool{New: func() interface{} { return new(typeInfoLoadArray) }}

func init() {
	refBitset = refBitset.
		set(byte(reflect.Map)).
		set(byte(reflect.Ptr)).
		set(byte(reflect.Func)).
		set(byte(reflect.Chan)).
		set(byte(reflect.UnsafePointer))

	isnilBitset = isnilBitset.
		set(byte(reflect.Map)).
		set(byte(reflect.Ptr)).
		set(byte(reflect.Func)).
		set(byte(reflect.Chan)).
		set(byte(reflect.UnsafePointer)).
		set(byte(reflect.Interface)).
		set(byte(reflect.Slice))

	scalarBitset = scalarBitset.
		set(byte(reflect.Bool)).
		set(byte(reflect.Int)).
		set(byte(reflect.Int8)).
		set(byte(reflect.Int16)).
		set(byte(reflect.Int32)).
		set(byte(reflect.Int64)).
		set(byte(reflect.Uint)).
		set(byte(reflect.Uint8)).
		set(byte(reflect.Uint16)).
		set(byte(reflect.Uint32)).
		set(byte(reflect.Uint64)).
		set(byte(reflect.Uintptr)).
		set(byte(reflect.Float32)).
		set(byte(reflect.Float64)).
		set(byte(reflect.Complex64)).
		set(byte(reflect.Complex128)).
		set(byte(reflect.String))

}

type handleFlag uint8

const (
	initedHandleFlag handleFlag = 1 << iota
	binaryHandleFlag
	jsonHandleFlag
)

type clsErr struct {
	closed    bool  // is it closed?
	errClosed error // error on closing
}

type charEncoding uint8

const (
	_ charEncoding = iota // make 0 unset
	cUTF8
	cUTF16LE
	cUTF16BE
	cUTF32LE
	cUTF32BE
	// Deprecated: not a true char encoding value
	cRAW charEncoding = 255
)

// valueType is the stream type
type valueType uint8

const (
	valueTypeUnset valueType = iota
	valueTypeNil
	valueTypeInt
	valueTypeUint
	valueTypeFloat
	valueTypeBool
	valueTypeString
	valueTypeSymbol
	valueTypeBytes
	valueTypeMap
	valueTypeArray
	valueTypeTime
	valueTypeExt

	// valueTypeInvalid = 0xff
)

var valueTypeStrings = [...]string{
	"Unset",
	"Nil",
	"Int",
	"Uint",
	"Float",
	"Bool",
	"String",
	"Symbol",
	"Bytes",
	"Map",
	"Array",
	"Timestamp",
	"Ext",
}

func (x valueType) String() string {
	if int(x) < len(valueTypeStrings) {
		return valueTypeStrings[x]
	}
	return strconv.FormatInt(int64(x), 10)
}

type seqType uint8

const (
	_ seqType = iota
	seqTypeArray
	seqTypeSlice
	seqTypeChan
)

// note that containerMapStart and containerArraySend are not sent.
// This is because the ReadXXXStart and EncodeXXXStart already does these.
type containerState uint8

const (
	_ containerState = iota

	containerMapStart
	containerMapKey
	containerMapValue
	containerMapEnd
	containerArrayStart
	containerArrayElem
	containerArrayEnd
)

// do not recurse if a containing type refers to an embedded type
// which refers back to its containing type (via a pointer).
// The second time this back-reference happens, break out,
// so as not to cause an infinite loop.
const rgetMaxRecursion = 2

// Anecdotally, we believe most types have <= 12 fields.
// - even Java's PMD rules set TooManyFields threshold to 15.
// However, go has embedded fields, which should be regarded as
// top level, allowing structs to possibly double or triple.
// In addition, we don't want to keep creating transient arrays,
// especially for the sfi index tracking, and the evtypes tracking.
//
// So - try to keep typeInfoLoadArray within 2K bytes
const (
	typeInfoLoadArraySfisLen   = 16
	typeInfoLoadArraySfiidxLen = 8 * 112
	typeInfoLoadArrayEtypesLen = 12
	typeInfoLoadArrayBLen      = 8 * 4
)

// typeInfoLoad is a transient object used while loading up a typeInfo.
type typeInfoLoad struct {
	etypes []uintptr
	sfis   []structFieldInfo
}

// typeInfoLoadArray is a cache object used to efficiently load up a typeInfo without
// much allocation.
type typeInfoLoadArray struct {
	sfis   [typeInfoLoadArraySfisLen]structFieldInfo
	sfiidx [typeInfoLoadArraySfiidxLen]byte
	etypes [typeInfoLoadArrayEtypesLen]uintptr
	b      [typeInfoLoadArrayBLen]byte // scratch - used for struct field names
}

// mirror json.Marshaler and json.Unmarshaler here,
// so we don't import the encoding/json package

type jsonMarshaler interface {
	MarshalJSON() ([]byte, error)
}
type jsonUnmarshaler interface {
	UnmarshalJSON([]byte) error
}

type isZeroer interface {
	IsZero() bool
}

type codecError struct {
	name string
	err  interface{}
}

func (e codecError) Cause() error {
	switch xerr := e.err.(type) {
	case nil:
		return nil
	case error:
		return xerr
	case string:
		return errors.New(xerr)
	case fmt.Stringer:
		return errors.New(xerr.String())
	default:
		return fmt.Errorf("%v", e.err)
	}
}

func (e codecError) Error() string {
	return fmt.Sprintf("%s error: %v", e.name, e.err)
}

var (
	bigen               = binary.BigEndian
	structInfoFieldName = "_struct"

	mapStrIntfTyp  = reflect.TypeOf(map[string]interface{}(nil))
	mapIntfIntfTyp = reflect.TypeOf(map[interface{}]interface{}(nil))
	intfSliceTyp   = reflect.TypeOf([]interface{}(nil))
	intfTyp        = intfSliceTyp.Elem()

	reflectValTyp = reflect.TypeOf((*reflect.Value)(nil)).Elem()

	stringTyp     = reflect.TypeOf("")
	timeTyp       = reflect.TypeOf(time.Time{})
	rawExtTyp     = reflect.TypeOf(RawExt{})
	rawTyp        = reflect.TypeOf(Raw{})
	uintptrTyp    = reflect.TypeOf(uintptr(0))
	uint8Typ      = reflect.TypeOf(uint8(0))
	uint8SliceTyp = reflect.TypeOf([]uint8(nil))
	uintTyp       = reflect.TypeOf(uint(0))
	intTyp        = reflect.TypeOf(int(0))

	mapBySliceTyp = reflect.TypeOf((*MapBySlice)(nil)).Elem()

	binaryMarshalerTyp   = reflect.TypeOf((*encoding.BinaryMarshaler)(nil)).Elem()
	binaryUnmarshalerTyp = reflect.TypeOf((*encoding.BinaryUnmarshaler)(nil)).Elem()

	textMarshalerTyp   = reflect.TypeOf((*encoding.TextMarshaler)(nil)).Elem()
	textUnmarshalerTyp = reflect.TypeOf((*encoding.TextUnmarshaler)(nil)).Elem()

	jsonMarshalerTyp   = reflect.TypeOf((*jsonMarshaler)(nil)).Elem()
	jsonUnmarshalerTyp = reflect.TypeOf((*jsonUnmarshaler)(nil)).Elem()

	selferTyp         = reflect.TypeOf((*Selfer)(nil)).Elem()
	missingFielderTyp = reflect.TypeOf((*MissingFielder)(nil)).Elem()
	iszeroTyp         = reflect.TypeOf((*isZeroer)(nil)).Elem()

	uint8TypId      = rt2id(uint8Typ)
	uint8SliceTypId = rt2id(uint8SliceTyp)
	rawExtTypId     = rt2id(rawExtTyp)
	rawTypId        = rt2id(rawTyp)
	intfTypId       = rt2id(intfTyp)
	timeTypId       = rt2id(timeTyp)
	stringTypId     = rt2id(stringTyp)

	mapStrIntfTypId  = rt2id(mapStrIntfTyp)
	mapIntfIntfTypId = rt2id(mapIntfIntfTyp)
	intfSliceTypId   = rt2id(intfSliceTyp)
	// mapBySliceTypId  = rt2id(mapBySliceTyp)

	intBitsize  = uint8(intTyp.Bits())
	uintBitsize = uint8(uintTyp.Bits())

	// bsAll0x00 = []byte{0, 0, 0, 0, 0, 0, 0, 0}
	bsAll0xff = []byte{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}

	chkOvf checkOverflow

	errNoFieldNameToStructFieldInfo = errors.New("no field name passed to parseStructFieldInfo")
)

var defTypeInfos = NewTypeInfos([]string{"codec", "json"})

var immutableKindsSet = [32]bool{
	// reflect.Invalid:  ,
	reflect.Bool:       true,
	reflect.Int:        true,
	reflect.Int8:       true,
	reflect.Int16:      true,
	reflect.Int32:      true,
	reflect.Int64:      true,
	reflect.Uint:       true,
	reflect.Uint8:      true,
	reflect.Uint16:     true,
	reflect.Uint32:     true,
	reflect.Uint64:     true,
	reflect.Uintptr:    true,
	reflect.Float32:    true,
	reflect.Float64:    true,
	reflect.Complex64:  true,
	reflect.Complex128: true,
	// reflect.Array
	// reflect.Chan
	// reflect.Func: true,
	// reflect.Interface
	// reflect.Map
	// reflect.Ptr
	// reflect.Slice
	reflect.String: true,
	// reflect.Struct
	// reflect.UnsafePointer
}

// SelfExt is a sentinel extension signifying that types
// registered with it SHOULD be encoded and decoded
// based on the native mode of the format.
//
// This allows users to define a tag for an extension,
// but signify that the types should be encoded/decoded as the native encoding.
// This way, users need not also define how to encode or decode the extension.
var SelfExt = &extFailWrapper{}

// Selfer defines methods by which a value can encode or decode itself.
//
// Any type which implements Selfer will be able to encode or decode itself.
// Consequently, during (en|de)code, this takes precedence over
// (text|binary)(M|Unm)arshal or extension support.
//
// By definition, it is not allowed for a Selfer to directly call Encode or Decode on itself.
// If that is done, Encode/Decode will rightfully fail with a Stack Overflow style error.
// For example, the snippet below will cause such an error.
//     type testSelferRecur struct{}
//     func (s *testSelferRecur) CodecEncodeSelf(e *Encoder) { e.MustEncode(s) }
//     func (s *testSelferRecur) CodecDecodeSelf(d *Decoder) { d.MustDecode(s) }
//
// Note: *the first set of bytes of any value MUST NOT represent nil in the format*.
// This is because, during each decode, we first check the the next set of bytes
// represent nil, and if so, we just set the value to nil.
type Selfer interface {
	CodecEncodeSelf(*Encoder)
	CodecDecodeSelf(*Decoder)
}

// MissingFielder defines the interface allowing structs to internally decode or encode
// values which do not map to struct fields.
//
// We expect that this interface is bound to a pointer type (so the mutation function works).
//
// A use-case is if a version of a type unexports a field, but you want compatibility between
// both versions during encoding and decoding.
//
// Note that the interface is completely ignored during codecgen.
type MissingFielder interface {
	// CodecMissingField is called to set a missing field and value pair.
	//
	// It returns true if the missing field was set on the struct.
	CodecMissingField(field []byte, value interface{}) bool

	// CodecMissingFields returns the set of fields which are not struct fields
	CodecMissingFields() map[string]interface{}
}

// MapBySlice is a tag interface that denotes wrapped slice should encode as a map in the stream.
// The slice contains a sequence of key-value pairs.
// This affords storing a map in a specific sequence in the stream.
//
// Example usage:
//    type T1 []string         // or []int or []Point or any other "slice" type
//    func (_ T1) MapBySlice{} // T1 now implements MapBySlice, and will be encoded as a map
//    type T2 struct { KeyValues T1 }
//
//    var kvs = []string{"one", "1", "two", "2", "three", "3"}
//    var v2 = T2{ KeyValues: T1(kvs) }
//    // v2 will be encoded like the map: {"KeyValues": {"one": "1", "two": "2", "three": "3"} }
//
// The support of MapBySlice affords the following:
//   - A slice type which implements MapBySlice will be encoded as a map
//   - A slice can be decoded from a map in the stream
//   - It MUST be a slice type (not a pointer receiver) that implements MapBySlice
type MapBySlice interface {
	MapBySlice()
}

// BasicHandle encapsulates the common options and extension functions.
//
// Deprecated: DO NOT USE DIRECTLY. EXPORTED FOR GODOC BENEFIT. WILL BE REMOVED.
type BasicHandle struct {
	// BasicHandle is always a part of a different type.
	// It doesn't have to fit into it own cache lines.

	// TypeInfos is used to get the type info for any type.
	//
	// If not configured, the default TypeInfos is used, which uses struct tag keys: codec, json
	TypeInfos *TypeInfos

	// Note: BasicHandle is not comparable, due to these slices here (extHandle, intf2impls).
	// If *[]T is used instead, this becomes comparable, at the cost of extra indirection.
	// Thses slices are used all the time, so keep as slices (not pointers).

	extHandle

	rtidFns      atomicRtidFnSlice
	rtidFnsNoExt atomicRtidFnSlice

	// ---- cache line

	DecodeOptions

	// ---- cache line

	EncodeOptions

	intf2impls

	mu     sync.Mutex
	inited uint32 // holds if inited, and also handle flags (binary encoding, json handler, etc)

	RPCOptions

	// TimeNotBuiltin configures whether time.Time should be treated as a builtin type.
	//
	// All Handlers should know how to encode/decode time.Time as part of the core
	// format specification, or as a standard extension defined by the format.
	//
	// However, users can elect to handle time.Time as a custom extension, or via the
	// standard library's encoding.Binary(M|Unm)arshaler or Text(M|Unm)arshaler interface.
	// To elect this behavior, users can set TimeNotBuiltin=true.
	//
	// Note: Setting TimeNotBuiltin=true can be used to enable the legacy behavior
	// (for Cbor and Msgpack), where time.Time was not a builtin supported type.
	//
	// Note: DO NOT CHANGE AFTER FIRST USE.
	//
	// Once a Handle has been used, do not modify this option.
	// It will lead to unexpected behaviour during encoding and decoding.
	TimeNotBuiltin bool

	// ExplicitRelease configures whether Release() is implicitly called after an encode or
	// decode call.
	//
	// If you will hold onto an Encoder or Decoder for re-use, by calling Reset(...)
	// on it or calling (Must)Encode repeatedly into a given []byte or io.Writer,
	// then you do not want it to be implicitly closed after each Encode/Decode call.
	// Doing so will unnecessarily return resources to the shared pool, only for you to
	// grab them right after again to do another Encode/Decode call.
	//
	// Instead, you configure ExplicitRelease=true, and you explicitly call Release() when
	// you are truly done.
	//
	// As an alternative, you can explicitly set a finalizer - so its resources
	// are returned to the shared pool before it is garbage-collected. Do it as below:
	//    runtime.SetFinalizer(e, (*Encoder).Release)
	//    runtime.SetFinalizer(d, (*Decoder).Release)
	//
	// Deprecated: This is not longer used as pools are only used for long-lived objects
	// which are shared across goroutines.
	// Setting this value has no effect. It is maintained for backward compatibility.
	ExplicitRelease bool

	// ---- cache line
}

// basicHandle returns an initialized BasicHandle from the Handle.
func basicHandle(hh Handle) (x *BasicHandle) {
	x = hh.getBasicHandle()
	// ** We need to simulate once.Do, to ensure no data race within the block.
	// ** Consequently, below would not work.
	// if atomic.CompareAndSwapUint32(&x.inited, 0, 1) {
	// 	x.be = hh.isBinary()
	// 	_, x.js = hh.(*JsonHandle)
	// 	x.n = hh.Name()[0]
	// }

	// simulate once.Do using our own stored flag and mutex as a CompareAndSwap
	// is not sufficient, since a race condition can occur within init(Handle) function.
	// init is made noinline, so that this function can be inlined by its caller.
	if atomic.LoadUint32(&x.inited) == 0 {
		x.init(hh)
	}
	return
}

func (x *BasicHandle) isJs() bool {
	return handleFlag(x.inited)&jsonHandleFlag != 0
}

func (x *BasicHandle) isBe() bool {
	return handleFlag(x.inited)&binaryHandleFlag != 0
}

//go:noinline
func (x *BasicHandle) init(hh Handle) {
	// make it uninlineable, as it is called at most once
	x.mu.Lock()
	if x.inited == 0 {
		var f = initedHandleFlag
		if hh.isBinary() {
			f |= binaryHandleFlag
		}
		if _, b := hh.(*JsonHandle); b {
			f |= jsonHandleFlag
		}
		atomic.StoreUint32(&x.inited, uint32(f))
		// ensure MapType and SliceType are of correct type
		if x.MapType != nil && x.MapType.Kind() != reflect.Map {
			panic(errMapTypeNotMapKind)
		}
		if x.SliceType != nil && x.SliceType.Kind() != reflect.Slice {
			panic(errSliceTypeNotSliceKind)
		}
	}
	x.mu.Unlock()
}

func (x *BasicHandle) getBasicHandle() *BasicHandle {
	return x
}

func (x *BasicHandle) getTypeInfo(rtid uintptr, rt reflect.Type) (pti *typeInfo) {
	if x.TypeInfos == nil {
		return defTypeInfos.get(rtid, rt)
	}
	return x.TypeInfos.get(rtid, rt)
}

func findFn(s []codecRtidFn, rtid uintptr) (i uint, fn *codecFn) {
	// binary search. adapted from sort/search.go.
	// Note: we use goto (instead of for loop) so this can be inlined.

	// h, i, j := 0, 0, len(s)
	var h uint // var h, i uint
	var j = uint(len(s))
LOOP:
	if i < j {
		h = i + (j-i)/2
		if s[h].rtid < rtid {
			i = h + 1
		} else {
			j = h
		}
		goto LOOP
	}
	if i < uint(len(s)) && s[i].rtid == rtid {
		fn = s[i].fn
	}
	return
}

func (x *BasicHandle) fn(rt reflect.Type) (fn *codecFn) {
	return x.fnVia(rt, &x.rtidFns, true)
}

func (x *BasicHandle) fnNoExt(rt reflect.Type) (fn *codecFn) {
	return x.fnVia(rt, &x.rtidFnsNoExt, false)
}

func (x *BasicHandle) fnVia(rt reflect.Type, fs *atomicRtidFnSlice, checkExt bool) (fn *codecFn) {
	rtid := rt2id(rt)
	sp := fs.load()
	if sp != nil {
		if _, fn = findFn(sp, rtid); fn != nil {
			return
		}
	}
	fn = x.fnLoad(rt, rtid, checkExt)
	x.mu.Lock()
	var sp2 []codecRtidFn
	sp = fs.load()
	if sp == nil {
		sp2 = []codecRtidFn{{rtid, fn}}
		fs.store(sp2)
	} else {
		idx, fn2 := findFn(sp, rtid)
		if fn2 == nil {
			sp2 = make([]codecRtidFn, len(sp)+1)
			copy(sp2, sp[:idx])
			copy(sp2[idx+1:], sp[idx:])
			sp2[idx] = codecRtidFn{rtid, fn}
			fs.store(sp2)
		}
	}
	x.mu.Unlock()
	return
}

func (x *BasicHandle) fnLoad(rt reflect.Type, rtid uintptr, checkExt bool) (fn *codecFn) {
	fn = new(codecFn)
	fi := &(fn.i)
	ti := x.getTypeInfo(rtid, rt)
	fi.ti = ti

	rk := reflect.Kind(ti.kind)

	// anything can be an extension except the built-in ones: time, raw and rawext

	if rtid == timeTypId && !x.TimeNotBuiltin {
		fn.fe = (*Encoder).kTime
		fn.fd = (*Decoder).kTime
	} else if rtid == rawTypId {
		fn.fe = (*Encoder).raw
		fn.fd = (*Decoder).raw
	} else if rtid == rawExtTypId {
		fn.fe = (*Encoder).rawExt
		fn.fd = (*Decoder).rawExt
		fi.addrF = true
		fi.addrD = true
		fi.addrE = true
	} else if xfFn := x.getExt(rtid, checkExt); xfFn != nil {
		fi.xfTag, fi.xfFn = xfFn.tag, xfFn.ext
		fn.fe = (*Encoder).ext
		fn.fd = (*Decoder).ext
		fi.addrF = true
		fi.addrD = true
		if rk == reflect.Struct || rk == reflect.Array {
			fi.addrE = true
		}
	} else if ti.isFlag(tiflagSelfer) || ti.isFlag(tiflagSelferPtr) {
		fn.fe = (*Encoder).selferMarshal
		fn.fd = (*Decoder).selferUnmarshal
		fi.addrF = true
		fi.addrD = ti.isFlag(tiflagSelferPtr)
		fi.addrE = ti.isFlag(tiflagSelferPtr)
	} else if supportMarshalInterfaces && x.isBe() &&
		(ti.isFlag(tiflagBinaryMarshaler) || ti.isFlag(tiflagBinaryMarshalerPtr)) &&
		(ti.isFlag(tiflagBinaryUnmarshaler) || ti.isFlag(tiflagBinaryUnmarshalerPtr)) {
		fn.fe = (*Encoder).binaryMarshal
		fn.fd = (*Decoder).binaryUnmarshal
		fi.addrF = true
		fi.addrD = ti.isFlag(tiflagBinaryUnmarshalerPtr)
		fi.addrE = ti.isFlag(tiflagBinaryMarshalerPtr)
	} else if supportMarshalInterfaces && !x.isBe() && x.isJs() &&
		(ti.isFlag(tiflagJsonMarshaler) || ti.isFlag(tiflagJsonMarshalerPtr)) &&
		(ti.isFlag(tiflagJsonUnmarshaler) || ti.isFlag(tiflagJsonUnmarshalerPtr)) {
		//If JSON, we should check JSONMarshal before textMarshal
		fn.fe = (*Encoder).jsonMarshal
		fn.fd = (*Decoder).jsonUnmarshal
		fi.addrF = true
		fi.addrD = ti.isFlag(tiflagJsonUnmarshalerPtr)
		fi.addrE = ti.isFlag(tiflagJsonMarshalerPtr)
	} else if supportMarshalInterfaces && !x.isBe() &&
		(ti.isFlag(tiflagTextMarshaler) || ti.isFlag(tiflagTextMarshalerPtr)) &&
		(ti.isFlag(tiflagTextUnmarshaler) || ti.isFlag(tiflagTextUnmarshalerPtr)) {
		fn.fe = (*Encoder).textMarshal
		fn.fd = (*Decoder).textUnmarshal
		fi.addrF = true
		fi.addrD = ti.isFlag(tiflagTextUnmarshalerPtr)
		fi.addrE = ti.isFlag(tiflagTextMarshalerPtr)
	} else {
		if fastpathEnabled && (rk == reflect.Map || rk == reflect.Slice) {
			if ti.pkgpath == "" { // un-named slice or map
				if idx := fastpathAV.index(rtid); idx != -1 {
					fn.fe = fastpathAV[idx].encfn
					fn.fd = fastpathAV[idx].decfn
					fi.addrD = true
					fi.addrF = false
				}
			} else {
				// use mapping for underlying type if there
				var rtu reflect.Type
				if rk == reflect.Map {
					rtu = reflect.MapOf(ti.key, ti.elem)
				} else {
					rtu = reflect.SliceOf(ti.elem)
				}
				rtuid := rt2id(rtu)
				if idx := fastpathAV.index(rtuid); idx != -1 {
					xfnf := fastpathAV[idx].encfn
					xrt := fastpathAV[idx].rt
					fn.fe = func(e *Encoder, xf *codecFnInfo, xrv reflect.Value) {
						xfnf(e, xf, rvConvert(xrv, xrt))
					}
					fi.addrD = true
					fi.addrF = false // meaning it can be an address(ptr) or a value
					xfnf2 := fastpathAV[idx].decfn
					xptr2rt := reflect.PtrTo(xrt)
					fn.fd = func(d *Decoder, xf *codecFnInfo, xrv reflect.Value) {
						if xrv.Kind() == reflect.Ptr {
							xfnf2(d, xf, rvConvert(xrv, xptr2rt))
						} else {
							xfnf2(d, xf, rvConvert(xrv, xrt))
						}
					}
				}
			}
		}
		if fn.fe == nil && fn.fd == nil {
			switch rk {
			case reflect.Bool:
				fn.fe = (*Encoder).kBool
				fn.fd = (*Decoder).kBool
			case reflect.String:
				// Do not use different functions based on StringToRaw option,
				// as that will statically set the function for a string type,
				// and if the Handle is modified thereafter, behaviour is non-deterministic.
				// i.e. DO NOT DO:
				//   if x.StringToRaw {
				//   	fn.fe = (*Encoder).kStringToRaw
				//   } else {
				//   	fn.fe = (*Encoder).kStringEnc
				//   }

				fn.fe = (*Encoder).kString
				fn.fd = (*Decoder).kString
			case reflect.Int:
				fn.fd = (*Decoder).kInt
				fn.fe = (*Encoder).kInt
			case reflect.Int8:
				fn.fe = (*Encoder).kInt8
				fn.fd = (*Decoder).kInt8
			case reflect.Int16:
				fn.fe = (*Encoder).kInt16
				fn.fd = (*Decoder).kInt16
			case reflect.Int32:
				fn.fe = (*Encoder).kInt32
				fn.fd = (*Decoder).kInt32
			case reflect.Int64:
				fn.fe = (*Encoder).kInt64
				fn.fd = (*Decoder).kInt64
			case reflect.Uint:
				fn.fd = (*Decoder).kUint
				fn.fe = (*Encoder).kUint
			case reflect.Uint8:
				fn.fe = (*Encoder).kUint8
				fn.fd = (*Decoder).kUint8
			case reflect.Uint16:
				fn.fe = (*Encoder).kUint16
				fn.fd = (*Decoder).kUint16
			case reflect.Uint32:
				fn.fe = (*Encoder).kUint32
				fn.fd = (*Decoder).kUint32
			case reflect.Uint64:
				fn.fe = (*Encoder).kUint64
				fn.fd = (*Decoder).kUint64
			case reflect.Uintptr:
				fn.fe = (*Encoder).kUintptr
				fn.fd = (*Decoder).kUintptr
			case reflect.Float32:
				fn.fe = (*Encoder).kFloat32
				fn.fd = (*Decoder).kFloat32
			case reflect.Float64:
				fn.fe = (*Encoder).kFloat64
				fn.fd = (*Decoder).kFloat64
			case reflect.Invalid:
				fn.fe = (*Encoder).kInvalid
				fn.fd = (*Decoder).kErr
			case reflect.Chan:
				fi.seq = seqTypeChan
				fn.fe = (*Encoder).kChan
				fn.fd = (*Decoder).kSliceForChan
			case reflect.Slice:
				fi.seq = seqTypeSlice
				fn.fe = (*Encoder).kSlice
				fn.fd = (*Decoder).kSlice
			case reflect.Array:
				fi.seq = seqTypeArray
				fn.fe = (*Encoder).kArray
				fi.addrF = false
				fi.addrD = false
				rt2 := reflect.SliceOf(ti.elem)
				fn.fd = func(d *Decoder, xf *codecFnInfo, xrv reflect.Value) {
					// call fnVia directly, so fn(...) is not recursive, and can be inlined
					d.h.fnVia(rt2, &x.rtidFns, true).fd(d, xf, rvGetSlice4Array(xrv, rt2))
				}
			case reflect.Struct:
				if ti.anyOmitEmpty ||
					ti.isFlag(tiflagMissingFielder) ||
					ti.isFlag(tiflagMissingFielderPtr) {
					fn.fe = (*Encoder).kStruct
				} else {
					fn.fe = (*Encoder).kStructNoOmitempty
				}
				fn.fd = (*Decoder).kStruct
			case reflect.Map:
				fn.fe = (*Encoder).kMap
				fn.fd = (*Decoder).kMap
			case reflect.Interface:
				// encode: reflect.Interface are handled already by preEncodeValue
				fn.fd = (*Decoder).kInterface
				fn.fe = (*Encoder).kErr
			default:
				// reflect.Ptr and reflect.Interface are handled already by preEncodeValue
				fn.fe = (*Encoder).kErr
				fn.fd = (*Decoder).kErr
			}
		}
	}
	return
}

// Handle defines a specific encoding format. It also stores any runtime state
// used during an Encoding or Decoding session e.g. stored state about Types, etc.
//
// Once a handle is configured, it can be shared across multiple Encoders and Decoders.
//
// Note that a Handle is NOT safe for concurrent modification.
//
// A Handle also should not be modified after it is configured and has
// been used at least once. This is because stored state may be out of sync with the
// new configuration, and a data race can occur when multiple goroutines access it.
// i.e. multiple Encoders or Decoders in different goroutines.
//
// Consequently, the typical usage model is that a Handle is pre-configured
// before first time use, and not modified while in use.
// Such a pre-configured Handle is safe for concurrent access.
type Handle interface {
	Name() string
	// return the basic handle. It may not have been inited.
	// Prefer to use basicHandle() helper function that ensures it has been inited.
	getBasicHandle() *BasicHandle
	newEncDriver() encDriver
	newDecDriver() decDriver
	isBinary() bool
}

// Raw represents raw formatted bytes.
// We "blindly" store it during encode and retrieve the raw bytes during decode.
// Note: it is dangerous during encode, so we may gate the behaviour
// behind an Encode flag which must be explicitly set.
type Raw []byte

// RawExt represents raw unprocessed extension data.
// Some codecs will decode extension data as a *RawExt
// if there is no registered extension for the tag.
//
// Only one of Data or Value is nil.
// If Data is nil, then the content of the RawExt is in the Value.
type RawExt struct {
	Tag uint64
	// Data is the []byte which represents the raw ext. If nil, ext is exposed in Value.
	// Data is used by codecs (e.g. binc, msgpack, simple) which do custom serialization of types
	Data []byte
	// Value represents the extension, if Data is nil.
	// Value is used by codecs (e.g. cbor, json) which leverage the format to do
	// custom serialization of the types.
	Value interface{}
}

// BytesExt handles custom (de)serialization of types to/from []byte.
// It is used by codecs (e.g. binc, msgpack, simple) which do custom serialization of the types.
type BytesExt interface {
	// WriteExt converts a value to a []byte.
	//
	// Note: v is a pointer iff the registered extension type is a struct or array kind.
	WriteExt(v interface{}) []byte

	// ReadExt updates a value from a []byte.
	//
	// Note: dst is always a pointer kind to the registered extension type.
	ReadExt(dst interface{}, src []byte)
}

// InterfaceExt handles custom (de)serialization of types to/from another interface{} value.
// The Encoder or Decoder will then handle the further (de)serialization of that known type.
//
// It is used by codecs (e.g. cbor, json) which use the format to do custom serialization of types.
type InterfaceExt interface {
	// ConvertExt converts a value into a simpler interface for easy encoding
	// e.g. convert time.Time to int64.
	//
	// Note: v is a pointer iff the registered extension type is a struct or array kind.
	ConvertExt(v interface{}) interface{}

	// UpdateExt updates a value from a simpler interface for easy decoding
	// e.g. convert int64 to time.Time.
	//
	// Note: dst is always a pointer kind to the registered extension type.
	UpdateExt(dst interface{}, src interface{})
}

// Ext handles custom (de)serialization of custom types / extensions.
type Ext interface {
	BytesExt
	InterfaceExt
}

// addExtWrapper is a wrapper implementation to support former AddExt exported method.
type addExtWrapper struct {
	encFn func(reflect.Value) ([]byte, error)
	decFn func(reflect.Value, []byte) error
}

func (x addExtWrapper) WriteExt(v interface{}) []byte {
	bs, err := x.encFn(rv4i(v))
	if err != nil {
		panic(err)
	}
	return bs
}

func (x addExtWrapper) ReadExt(v interface{}, bs []byte) {
	if err := x.decFn(rv4i(v), bs); err != nil {
		panic(err)
	}
}

func (x addExtWrapper) ConvertExt(v interface{}) interface{} {
	return x.WriteExt(v)
}

func (x addExtWrapper) UpdateExt(dest interface{}, v interface{}) {
	x.ReadExt(dest, v.([]byte))
}

type bytesExtFailer struct{}

func (bytesExtFailer) WriteExt(v interface{}) []byte {
	panicv.errorstr("BytesExt.WriteExt is not supported")
	return nil
}
func (bytesExtFailer) ReadExt(v interface{}, bs []byte) {
	panicv.errorstr("BytesExt.ReadExt is not supported")
}

type interfaceExtFailer struct{}

func (interfaceExtFailer) ConvertExt(v interface{}) interface{} {
	panicv.errorstr("InterfaceExt.ConvertExt is not supported")
	return nil
}
func (interfaceExtFailer) UpdateExt(dest interface{}, v interface{}) {
	panicv.errorstr("InterfaceExt.UpdateExt is not supported")
}

type bytesExtWrapper struct {
	interfaceExtFailer
	BytesExt
}

type interfaceExtWrapper struct {
	bytesExtFailer
	InterfaceExt
}

type extFailWrapper struct {
	bytesExtFailer
	interfaceExtFailer
}

type binaryEncodingType struct{}

func (binaryEncodingType) isBinary() bool { return true }

type textEncodingType struct{}

func (textEncodingType) isBinary() bool { return false }

// noBuiltInTypes is embedded into many types which do not support builtins
// e.g. msgpack, simple, cbor.

type noBuiltInTypes struct{}

func (noBuiltInTypes) EncodeBuiltin(rt uintptr, v interface{}) {}
func (noBuiltInTypes) DecodeBuiltin(rt uintptr, v interface{}) {}

// bigenHelper.
// Users must already slice the x completely, because we will not reslice.
type bigenHelper struct {
	x []byte // must be correctly sliced to appropriate len. slicing is a cost.
	w *encWr
}

func (z bigenHelper) writeUint16(v uint16) {
	bigen.PutUint16(z.x, v)
	z.w.writeb(z.x)
}

func (z bigenHelper) writeUint32(v uint32) {
	bigen.PutUint32(z.x, v)
	z.w.writeb(z.x)
}

func (z bigenHelper) writeUint64(v uint64) {
	bigen.PutUint64(z.x, v)
	z.w.writeb(z.x)
}

type extTypeTagFn struct {
	rtid    uintptr
	rtidptr uintptr
	rt      reflect.Type
	tag     uint64
	ext     Ext
	// _       [1]uint64 // padding
}

type extHandle []extTypeTagFn

// AddExt registes an encode and decode function for a reflect.Type.
// To deregister an Ext, call AddExt with nil encfn and/or nil decfn.
//
// Deprecated: Use SetBytesExt or SetInterfaceExt on the Handle instead.
func (o *extHandle) AddExt(rt reflect.Type, tag byte,
	encfn func(reflect.Value) ([]byte, error),
	decfn func(reflect.Value, []byte) error) (err error) {
	if encfn == nil || decfn == nil {
		return o.SetExt(rt, uint64(tag), nil)
	}
	return o.SetExt(rt, uint64(tag), addExtWrapper{encfn, decfn})
}

// SetExt will set the extension for a tag and reflect.Type.
// Note that the type must be a named type, and specifically not a pointer or Interface.
// An error is returned if that is not honored.
// To Deregister an ext, call SetExt with nil Ext.
//
// Deprecated: Use SetBytesExt or SetInterfaceExt on the Handle instead.
func (o *extHandle) SetExt(rt reflect.Type, tag uint64, ext Ext) (err error) {
	// o is a pointer, because we may need to initialize it
	// We EXPECT *o is a pointer to a non-nil extHandle.

	rk := rt.Kind()
	for rk == reflect.Ptr {
		rt = rt.Elem()
		rk = rt.Kind()
	}

	if rt.PkgPath() == "" || rk == reflect.Interface { // || rk == reflect.Ptr {
		return fmt.Errorf("codec.Handle.SetExt: Takes named type, not a pointer or interface: %v", rt)
	}

	rtid := rt2id(rt)
	switch rtid {
	case timeTypId, rawTypId, rawExtTypId:
		// all natively supported type, so cannot have an extension.
		// However, we do not return an error for these, as we do not document that.
		// Instead, we silently treat as a no-op, and return.
		return
	}
	o2 := *o
	for i := range o2 {
		v := &o2[i]
		if v.rtid == rtid {
			v.tag, v.ext = tag, ext
			return
		}
	}
	rtidptr := rt2id(reflect.PtrTo(rt))
	*o = append(o2, extTypeTagFn{rtid, rtidptr, rt, tag, ext}) // , [1]uint64{}})
	return
}

func (o extHandle) getExt(rtid uintptr, check bool) (v *extTypeTagFn) {
	if !check {
		return
	}
	for i := range o {
		v = &o[i]
		if v.rtid == rtid || v.rtidptr == rtid {
			return
		}
	}
	return nil
}

func (o extHandle) getExtForTag(tag uint64) (v *extTypeTagFn) {
	for i := range o {
		v = &o[i]
		if v.tag == tag {
			return
		}
	}
	return nil
}

type intf2impl struct {
	rtid uintptr // for intf
	impl reflect.Type
	// _    [1]uint64 // padding // not-needed, as *intf2impl is never returned.
}

type intf2impls []intf2impl

// Intf2Impl maps an interface to an implementing type.
// This allows us support infering the concrete type
// and populating it when passed an interface.
// e.g. var v io.Reader can be decoded as a bytes.Buffer, etc.
//
// Passing a nil impl will clear the mapping.
func (o *intf2impls) Intf2Impl(intf, impl reflect.Type) (err error) {
	if impl != nil && !impl.Implements(intf) {
		return fmt.Errorf("Intf2Impl: %v does not implement %v", impl, intf)
	}
	rtid := rt2id(intf)
	o2 := *o
	for i := range o2 {
		v := &o2[i]
		if v.rtid == rtid {
			v.impl = impl
			return
		}
	}
	*o = append(o2, intf2impl{rtid, impl})
	return
}

func (o intf2impls) intf2impl(rtid uintptr) (rv reflect.Value) {
	for i := range o {
		v := &o[i]
		if v.rtid == rtid {
			if v.impl == nil {
				return
			}
			vkind := v.impl.Kind()
			if vkind == reflect.Ptr {
				return reflect.New(v.impl.Elem())
			}
			return rvZeroAddrK(v.impl, vkind)
		}
	}
	return
}

type structFieldInfoFlag uint8

const (
	_ structFieldInfoFlag = 1 << iota
	structFieldInfoFlagReady
	structFieldInfoFlagOmitEmpty
)

func (x *structFieldInfoFlag) flagSet(f structFieldInfoFlag) {
	*x = *x | f
}

func (x *structFieldInfoFlag) flagClr(f structFieldInfoFlag) {
	*x = *x &^ f
}

func (x structFieldInfoFlag) flagGet(f structFieldInfoFlag) bool {
	return x&f != 0
}

func (x structFieldInfoFlag) omitEmpty() bool {
	return x.flagGet(structFieldInfoFlagOmitEmpty)
}

func (x structFieldInfoFlag) ready() bool {
	return x.flagGet(structFieldInfoFlagReady)
}

type structFieldInfo struct {
	encName   string // encode name
	fieldName string // field name

	is  [maxLevelsEmbedding]uint16 // (recursive/embedded) field index in struct
	nis uint8                      // num levels of embedding. if 1, then it's not embedded.

	encNameAsciiAlphaNum bool // the encName only contains ascii alphabet and numbers
	structFieldInfoFlag
	// _ [1]byte // padding
}

// func (si *structFieldInfo) setToZeroValue(v reflect.Value) {
// 	if v, valid := si.field(v, false); valid {
// 		v.Set(reflect.Zero(v.Type()))
// 	}
// }

// rv returns the field of the struct.
// If anonymous, it returns an Invalid
func (si *structFieldInfo) field(v reflect.Value, update bool) (rv2 reflect.Value, valid bool) {
	// replicate FieldByIndex
	for i, x := range si.is {
		if uint8(i) == si.nis {
			break
		}
		if v, valid = baseStructRv(v, update); !valid {
			return
		}
		v = v.Field(int(x))
	}

	return v, true
}

func parseStructInfo(stag string) (toArray, omitEmpty bool, keytype valueType) {
	keytype = valueTypeString // default
	if stag == "" {
		return
	}
	for i, s := range strings.Split(stag, ",") {
		if i == 0 {
		} else {
			switch s {
			case "omitempty":
				omitEmpty = true
			case "toarray":
				toArray = true
			case "int":
				keytype = valueTypeInt
			case "uint":
				keytype = valueTypeUint
			case "float":
				keytype = valueTypeFloat
				// case "bool":
				// 	keytype = valueTypeBool
			case "string":
				keytype = valueTypeString
			}
		}
	}
	return
}

func (si *structFieldInfo) parseTag(stag string) {
	// if fname == "" {
	// 	panic(errNoFieldNameToStructFieldInfo)
	// }

	if stag == "" {
		return
	}
	for i, s := range strings.Split(stag, ",") {
		if i == 0 {
			if s != "" {
				si.encName = s
			}
		} else {
			switch s {
			case "omitempty":
				si.flagSet(structFieldInfoFlagOmitEmpty)
			}
		}
	}
}

type sfiSortedByEncName []*structFieldInfo

func (p sfiSortedByEncName) Len() int           { return len(p) }
func (p sfiSortedByEncName) Less(i, j int) bool { return p[uint(i)].encName < p[uint(j)].encName }
func (p sfiSortedByEncName) Swap(i, j int)      { p[uint(i)], p[uint(j)] = p[uint(j)], p[uint(i)] }

const structFieldNodeNumToCache = 4

type structFieldNodeCache struct {
	rv  [structFieldNodeNumToCache]reflect.Value
	idx [structFieldNodeNumToCache]uint32
	num uint8
}

func (x *structFieldNodeCache) get(key uint32) (fv reflect.Value, valid bool) {
	for i, k := range &x.idx {
		if uint8(i) == x.num {
			return // break
		}
		if key == k {
			return x.rv[i], true
		}
	}
	return
}

func (x *structFieldNodeCache) tryAdd(fv reflect.Value, key uint32) {
	if x.num < structFieldNodeNumToCache {
		x.rv[x.num] = fv
		x.idx[x.num] = key
		x.num++
		return
	}
}

type structFieldNode struct {
	v      reflect.Value
	cache2 structFieldNodeCache
	cache3 structFieldNodeCache
	update bool
}

func (x *structFieldNode) field(si *structFieldInfo) (fv reflect.Value) {
	// return si.fieldval(x.v, x.update)

	// Note: we only cache if nis=2 or nis=3 i.e. up to 2 levels of embedding
	// This mostly saves us time on the repeated calls to v.Elem, v.Field, etc.
	var valid bool
	switch si.nis {
	case 1:
		fv = x.v.Field(int(si.is[0]))
	case 2:
		if fv, valid = x.cache2.get(uint32(si.is[0])); valid {
			fv = fv.Field(int(si.is[1]))
			return
		}
		fv = x.v.Field(int(si.is[0]))
		if fv, valid = baseStructRv(fv, x.update); !valid {
			return
		}
		x.cache2.tryAdd(fv, uint32(si.is[0]))
		fv = fv.Field(int(si.is[1]))
	case 3:
		var key uint32 = uint32(si.is[0])<<16 | uint32(si.is[1])
		if fv, valid = x.cache3.get(key); valid {
			fv = fv.Field(int(si.is[2]))
			return
		}
		fv = x.v.Field(int(si.is[0]))
		if fv, valid = baseStructRv(fv, x.update); !valid {
			return
		}
		fv = fv.Field(int(si.is[1]))
		if fv, valid = baseStructRv(fv, x.update); !valid {
			return
		}
		x.cache3.tryAdd(fv, key)
		fv = fv.Field(int(si.is[2]))
	default:
		fv, _ = si.field(x.v, x.update)
	}
	return
}

func baseStructRv(v reflect.Value, update bool) (v2 reflect.Value, valid bool) {
	for v.Kind() == reflect.Ptr {
		if rvIsNil(v) {
			if !update {
				return
			}
			rvSetDirect(v, reflect.New(v.Type().Elem()))
		}
		v = v.Elem()
	}
	return v, true
}

type tiflag uint32

const (
	_ tiflag = 1 << iota

	tiflagComparable

	tiflagIsZeroer
	tiflagIsZeroerPtr

	tiflagBinaryMarshaler
	tiflagBinaryMarshalerPtr

	tiflagBinaryUnmarshaler
	tiflagBinaryUnmarshalerPtr

	tiflagTextMarshaler
	tiflagTextMarshalerPtr

	tiflagTextUnmarshaler
	tiflagTextUnmarshalerPtr

	tiflagJsonMarshaler
	tiflagJsonMarshalerPtr

	tiflagJsonUnmarshaler
	tiflagJsonUnmarshalerPtr

	tiflagSelfer
	tiflagSelferPtr

	tiflagMissingFielder
	tiflagMissingFielderPtr
)

// typeInfo keeps static (non-changing readonly)information
// about each (non-ptr) type referenced in the encode/decode sequence.
//
// During an encode/decode sequence, we work as below:
//   - If base is a built in type, en/decode base value
//   - If base is registered as an extension, en/decode base value
//   - If type is binary(M/Unm)arshaler, call Binary(M/Unm)arshal method
//   - If type is text(M/Unm)arshaler, call Text(M/Unm)arshal method
//   - Else decode appropriately based on the reflect.Kind
type typeInfo struct {
	rt      reflect.Type
	elem    reflect.Type
	pkgpath string

	rtid uintptr

	numMeth uint16 // number of methods
	kind    uint8
	chandir uint8

	anyOmitEmpty bool      // true if a struct, and any of the fields are tagged "omitempty"
	toArray      bool      // whether this (struct) type should be encoded as an array
	keyType      valueType // if struct, how is the field name stored in a stream? default is string
	mbs          bool      // base type (T or *T) is a MapBySlice

	// ---- cpu cache line boundary?
	sfiSort []*structFieldInfo // sorted. Used when enc/dec struct to map.
	sfiSrc  []*structFieldInfo // unsorted. Used when enc/dec struct to array.

	key reflect.Type

	// ---- cpu cache line boundary?
	// sfis         []structFieldInfo // all sfi, in src order, as created.
	sfiNamesSort []byte // all names, with indexes into the sfiSort

	// rv0 is the zero value for the type.
	// It is mostly beneficial for all non-reference kinds
	// i.e. all but map/chan/func/ptr/unsafe.pointer
	// so beneficial for intXX, bool, slices, structs, etc
	rv0 reflect.Value

	elemsize uintptr

	// other flags, with individual bits representing if set.
	flags tiflag

	infoFieldOmitempty bool

	elemkind uint8
	_        [2]byte // padding
	// _ [1]uint64 // padding
}

func (ti *typeInfo) isFlag(f tiflag) bool {
	return ti.flags&f != 0
}

func (ti *typeInfo) flag(when bool, f tiflag) *typeInfo {
	if when {
		ti.flags |= f
	}
	return ti
}

func (ti *typeInfo) indexForEncName(name []byte) (index int16) {
	var sn []byte
	if len(name)+2 <= 32 {
		var buf [32]byte // should not escape to heap
		sn = buf[:len(name)+2]
	} else {
		sn = make([]byte, len(name)+2)
	}
	copy(sn[1:], name)
	sn[0], sn[len(sn)-1] = tiSep2(name), 0xff
	j := bytes.Index(ti.sfiNamesSort, sn)
	if j < 0 {
		return -1
	}
	index = int16(uint16(ti.sfiNamesSort[j+len(sn)+1]) | uint16(ti.sfiNamesSort[j+len(sn)])<<8)
	return
}

type rtid2ti struct {
	rtid uintptr
	ti   *typeInfo
}

// TypeInfos caches typeInfo for each type on first inspection.
//
// It is configured with a set of tag keys, which are used to get
// configuration for the type.
type TypeInfos struct {
	// infos: formerly map[uintptr]*typeInfo, now *[]rtid2ti, 2 words expected
	infos atomicTypeInfoSlice
	mu    sync.Mutex
	_     uint64 // padding (cache-aligned)
	tags  []string
	_     uint64 // padding (cache-aligned)
}

// NewTypeInfos creates a TypeInfos given a set of struct tags keys.
//
// This allows users customize the struct tag keys which contain configuration
// of their types.
func NewTypeInfos(tags []string) *TypeInfos {
	return &TypeInfos{tags: tags}
}

func (x *TypeInfos) structTag(t reflect.StructTag) (s string) {
	// check for tags: codec, json, in that order.
	// this allows seamless support for many configured structs.
	for _, x := range x.tags {
		s = t.Get(x)
		if s != "" {
			return s
		}
	}
	return
}

func findTypeInfo(s []rtid2ti, rtid uintptr) (i uint, ti *typeInfo) {
	// binary search. adapted from sort/search.go.
	// Note: we use goto (instead of for loop) so this can be inlined.

	// h, i, j := 0, 0, len(s)
	var h uint // var h, i uint
	var j = uint(len(s))
LOOP:
	if i < j {
		h = i + (j-i)/2
		if s[h].rtid < rtid {
			i = h + 1
		} else {
			j = h
		}
		goto LOOP
	}
	if i < uint(len(s)) && s[i].rtid == rtid {
		ti = s[i].ti
	}
	return
}

func (x *TypeInfos) get(rtid uintptr, rt reflect.Type) (pti *typeInfo) {
	sp := x.infos.load()
	if sp != nil {
		_, pti = findTypeInfo(sp, rtid)
		if pti != nil {
			return
		}
	}

	rk := rt.Kind()

	if rk == reflect.Ptr { // || (rk == reflect.Interface && rtid != intfTypId) {
		panicv.errorf("invalid kind passed to TypeInfos.get: %v - %v", rk, rt)
	}

	// do not hold lock while computing this.
	// it may lead to duplication, but that's ok.
	ti := typeInfo{
		rt:      rt,
		rtid:    rtid,
		kind:    uint8(rk),
		pkgpath: rt.PkgPath(),
		keyType: valueTypeString, // default it - so it's never 0
	}
	ti.rv0 = reflect.Zero(rt)

	ti.numMeth = uint16(rt.NumMethod())

	var b1, b2 bool
	b1, b2 = implIntf(rt, binaryMarshalerTyp)
	ti.flag(b1, tiflagBinaryMarshaler).flag(b2, tiflagBinaryMarshalerPtr)
	b1, b2 = implIntf(rt, binaryUnmarshalerTyp)
	ti.flag(b1, tiflagBinaryUnmarshaler).flag(b2, tiflagBinaryUnmarshalerPtr)
	b1, b2 = implIntf(rt, textMarshalerTyp)
	ti.flag(b1, tiflagTextMarshaler).flag(b2, tiflagTextMarshalerPtr)
	b1, b2 = implIntf(rt, textUnmarshalerTyp)
	ti.flag(b1, tiflagTextUnmarshaler).flag(b2, tiflagTextUnmarshalerPtr)
	b1, b2 = implIntf(rt, jsonMarshalerTyp)
	ti.flag(b1, tiflagJsonMarshaler).flag(b2, tiflagJsonMarshalerPtr)
	b1, b2 = implIntf(rt, jsonUnmarshalerTyp)
	ti.flag(b1, tiflagJsonUnmarshaler).flag(b2, tiflagJsonUnmarshalerPtr)
	b1, b2 = implIntf(rt, selferTyp)
	ti.flag(b1, tiflagSelfer).flag(b2, tiflagSelferPtr)
	b1, b2 = implIntf(rt, missingFielderTyp)
	ti.flag(b1, tiflagMissingFielder).flag(b2, tiflagMissingFielderPtr)
	b1, b2 = implIntf(rt, iszeroTyp)
	ti.flag(b1, tiflagIsZeroer).flag(b2, tiflagIsZeroerPtr)
	b1 = rt.Comparable()
	ti.flag(b1, tiflagComparable)

	switch rk {
	case reflect.Struct:
		var omitEmpty bool
		if f, ok := rt.FieldByName(structInfoFieldName); ok {
			ti.toArray, omitEmpty, ti.keyType = parseStructInfo(x.structTag(f.Tag))
			ti.infoFieldOmitempty = omitEmpty
		} else {
			ti.keyType = valueTypeString
		}
		pp, pi := &pool4tiload, pool4tiload.Get() // pool.tiLoad()
		pv := pi.(*typeInfoLoadArray)
		pv.etypes[0] = ti.rtid
		// vv := typeInfoLoad{pv.fNames[:0], pv.encNames[:0], pv.etypes[:1], pv.sfis[:0]}
		vv := typeInfoLoad{pv.etypes[:1], pv.sfis[:0]}
		x.rget(rt, rtid, omitEmpty, nil, &vv)
		ti.sfiSrc, ti.sfiSort, ti.sfiNamesSort, ti.anyOmitEmpty = rgetResolveSFI(rt, vv.sfis, pv)
		pp.Put(pi)
	case reflect.Map:
		ti.elem = rt.Elem()
		ti.key = rt.Key()
	case reflect.Slice:
		ti.mbs, _ = implIntf(rt, mapBySliceTyp)
		ti.elem = rt.Elem()
		ti.elemsize = ti.elem.Size()
		ti.elemkind = uint8(ti.elem.Kind())
	case reflect.Chan:
		ti.elem = rt.Elem()
		ti.chandir = uint8(rt.ChanDir())
	case reflect.Array:
		ti.elem = rt.Elem()
		ti.elemsize = ti.elem.Size()
		ti.elemkind = uint8(ti.elem.Kind())
	case reflect.Ptr:
		ti.elem = rt.Elem()
	}

	x.mu.Lock()
	sp = x.infos.load()
	var sp2 []rtid2ti
	if sp == nil {
		pti = &ti
		sp2 = []rtid2ti{{rtid, pti}}
		x.infos.store(sp2)
	} else {
		var idx uint
		idx, pti = findTypeInfo(sp, rtid)
		if pti == nil {
			pti = &ti
			sp2 = make([]rtid2ti, len(sp)+1)
			copy(sp2, sp[:idx])
			copy(sp2[idx+1:], sp[idx:])
			sp2[idx] = rtid2ti{rtid, pti}
			x.infos.store(sp2)
		}
	}
	x.mu.Unlock()
	return
}

func (x *TypeInfos) rget(rt reflect.Type, rtid uintptr, omitEmpty bool,
	indexstack []uint16, pv *typeInfoLoad) {
	// Read up fields and store how to access the value.
	//
	// It uses go's rules for message selectors,
	// which say that the field with the shallowest depth is selected.
	//
	// Note: we consciously use slices, not a map, to simulate a set.
	//       Typically, types have < 16 fields,
	//       and iteration using equals is faster than maps there
	flen := rt.NumField()
	if flen > (1<<maxLevelsEmbedding - 1) {
		panicv.errorf("codec: types with > %v fields are not supported - has %v fields",
			(1<<maxLevelsEmbedding - 1), flen)
	}
	// pv.sfis = make([]structFieldInfo, flen)
LOOP:
	for j, jlen := uint16(0), uint16(flen); j < jlen; j++ {
		f := rt.Field(int(j))
		fkind := f.Type.Kind()
		// skip if a func type, or is unexported, or structTag value == "-"
		switch fkind {
		case reflect.Func, reflect.Complex64, reflect.Complex128, reflect.UnsafePointer:
			continue LOOP
		}

		isUnexported := f.PkgPath != ""
		if isUnexported && !f.Anonymous {
			continue
		}
		stag := x.structTag(f.Tag)
		if stag == "-" {
			continue
		}
		var si structFieldInfo
		var parsed bool
		// if anonymous and no struct tag (or it's blank),
		// and a struct (or pointer to struct), inline it.
		if f.Anonymous && fkind != reflect.Interface {
			// ^^ redundant but ok: per go spec, an embedded pointer type cannot be to an interface
			ft := f.Type
			isPtr := ft.Kind() == reflect.Ptr
			for ft.Kind() == reflect.Ptr {
				ft = ft.Elem()
			}
			isStruct := ft.Kind() == reflect.Struct

			// Ignore embedded fields of unexported non-struct types.
			// Also, from go1.10, ignore pointers to unexported struct types
			// because unmarshal cannot assign a new struct to an unexported field.
			// See https://golang.org/issue/21357
			if (isUnexported && !isStruct) || (!allowSetUnexportedEmbeddedPtr && isUnexported && isPtr) {
				continue
			}
			doInline := stag == ""
			if !doInline {
				si.parseTag(stag)
				parsed = true
				doInline = si.encName == ""
				// doInline = si.isZero()
			}
			if doInline && isStruct {
				// if etypes contains this, don't call rget again (as fields are already seen here)
				ftid := rt2id(ft)
				// We cannot recurse forever, but we need to track other field depths.
				// So - we break if we see a type twice (not the first time).
				// This should be sufficient to handle an embedded type that refers to its
				// owning type, which then refers to its embedded type.
				processIt := true
				numk := 0
				for _, k := range pv.etypes {
					if k == ftid {
						numk++
						if numk == rgetMaxRecursion {
							processIt = false
							break
						}
					}
				}
				if processIt {
					pv.etypes = append(pv.etypes, ftid)
					indexstack2 := make([]uint16, len(indexstack)+1)
					copy(indexstack2, indexstack)
					indexstack2[len(indexstack)] = j
					// indexstack2 := append(append(make([]int, 0, len(indexstack)+4), indexstack...), j)
					x.rget(ft, ftid, omitEmpty, indexstack2, pv)
				}
				continue
			}
		}

		// after the anonymous dance: if an unexported field, skip
		if isUnexported {
			continue
		}

		if f.Name == "" {
			panic(errNoFieldNameToStructFieldInfo)
		}

		// pv.fNames = append(pv.fNames, f.Name)
		// if si.encName == "" {

		if !parsed {
			si.encName = f.Name
			si.parseTag(stag)
			parsed = true
		} else if si.encName == "" {
			si.encName = f.Name
		}
		si.encNameAsciiAlphaNum = true
		for i := len(si.encName) - 1; i >= 0; i-- { // bounds-check elimination
			b := si.encName[i]
			if (b >= '0' && b <= '9') || (b >= 'a' && b <= 'z') || (b >= 'A' && b <= 'Z') {
				continue
			}
			si.encNameAsciiAlphaNum = false
			break
		}
		si.fieldName = f.Name
		si.flagSet(structFieldInfoFlagReady)

		if len(indexstack) > maxLevelsEmbedding-1 {
			panicv.errorf("codec: only supports up to %v depth of embedding - type has %v depth",
				maxLevelsEmbedding-1, len(indexstack))
		}
		si.nis = uint8(len(indexstack)) + 1
		copy(si.is[:], indexstack)
		si.is[len(indexstack)] = j

		if omitEmpty {
			si.flagSet(structFieldInfoFlagOmitEmpty)
		}
		pv.sfis = append(pv.sfis, si)
	}
}

func tiSep(name string) uint8 {
	// (xn[0]%64) // (between 192-255 - outside ascii BMP)
	// Tried the following before settling on correct implementation:
	//   return 0xfe - (name[0] & 63)
	//   return 0xfe - (name[0] & 63) - uint8(len(name))
	//   return 0xfe - (name[0] & 63) - uint8(len(name)&63)
	//   return ((0xfe - (name[0] & 63)) & 0xf8) | (uint8(len(name) & 0x07))

	return 0xfe - (name[0] & 63) - uint8(len(name)&63)
}

func tiSep2(name []byte) uint8 {
	return 0xfe - (name[0] & 63) - uint8(len(name)&63)
}

// resolves the struct field info got from a call to rget.
// Returns a trimmed, unsorted and sorted []*structFieldInfo.
func rgetResolveSFI(rt reflect.Type, x []structFieldInfo, pv *typeInfoLoadArray) (
	y, z []*structFieldInfo, ss []byte, anyOmitEmpty bool) {
	sa := pv.sfiidx[:0]
	sn := pv.b[:]
	n := len(x)

	var xn string
	var ui uint16
	var sep byte

	for i := range x {
		ui = uint16(i)
		xn = x[i].encName // fieldName or encName? use encName for now.
		if len(xn)+2 > cap(sn) {
			sn = make([]byte, len(xn)+2)
		} else {
			sn = sn[:len(xn)+2]
		}
		// use a custom sep, so that misses are less frequent,
		// since the sep (first char in search) is as unique as first char in field name.
		sep = tiSep(xn)
		sn[0], sn[len(sn)-1] = sep, 0xff
		copy(sn[1:], xn)
		j := bytes.Index(sa, sn)
		if j == -1 {
			sa = append(sa, sep)
			sa = append(sa, xn...)
			sa = append(sa, 0xff, byte(ui>>8), byte(ui))
		} else {
			index := uint16(sa[j+len(sn)+1]) | uint16(sa[j+len(sn)])<<8
			// one of them must be cleared (reset to nil),
			// and the index updated appropriately
			i2clear := ui                // index to be cleared
			if x[i].nis < x[index].nis { // this one is shallower
				// update the index to point to this later one.
				sa[j+len(sn)], sa[j+len(sn)+1] = byte(ui>>8), byte(ui)
				// clear the earlier one, as this later one is shallower.
				i2clear = index
			}
			if x[i2clear].ready() {
				x[i2clear].flagClr(structFieldInfoFlagReady)
				n--
			}
		}
	}

	var w []structFieldInfo
	sharingArray := len(x) <= typeInfoLoadArraySfisLen // sharing array with typeInfoLoadArray
	if sharingArray {
		w = make([]structFieldInfo, n)
	}

	// remove all the nils (non-ready)
	y = make([]*structFieldInfo, n)
	n = 0
	var sslen int
	for i := range x {
		if !x[i].ready() {
			continue
		}
		if !anyOmitEmpty && x[i].omitEmpty() {
			anyOmitEmpty = true
		}
		if sharingArray {
			w[n] = x[i]
			y[n] = &w[n]
		} else {
			y[n] = &x[i]
		}
		sslen = sslen + len(x[i].encName) + 4
		n++
	}
	if n != len(y) {
		panicv.errorf("failure reading struct %v - expecting %d of %d valid fields, got %d",
			rt, len(y), len(x), n)
	}

	z = make([]*structFieldInfo, len(y))
	copy(z, y)
	sort.Sort(sfiSortedByEncName(z))

	sharingArray = len(sa) <= typeInfoLoadArraySfiidxLen
	if sharingArray {
		ss = make([]byte, 0, sslen)
	} else {
		ss = sa[:0] // reuse the newly made sa array if necessary
	}
	for i := range z {
		xn = z[i].encName
		sep = tiSep(xn)
		ui = uint16(i)
		ss = append(ss, sep)
		ss = append(ss, xn...)
		ss = append(ss, 0xff, byte(ui>>8), byte(ui))
	}
	return
}

func implIntf(rt, iTyp reflect.Type) (base bool, indir bool) {
	return rt.Implements(iTyp), reflect.PtrTo(rt).Implements(iTyp)
}

// isEmptyStruct is only called from isEmptyValue, and checks if a struct is empty:
//    - does it implement IsZero() bool
//    - is it comparable, and can i compare directly using ==
//    - if checkStruct, then walk through the encodable fields
//      and check if they are empty or not.
func isEmptyStruct(v reflect.Value, tinfos *TypeInfos, deref, checkStruct bool) bool {
	// v is a struct kind - no need to check again.
	// We only check isZero on a struct kind, to reduce the amount of times
	// that we lookup the rtid and typeInfo for each type as we walk the tree.

	vt := v.Type()
	rtid := rt2id(vt)
	if tinfos == nil {
		tinfos = defTypeInfos
	}
	ti := tinfos.get(rtid, vt)
	if ti.rtid == timeTypId {
		return rv2i(v).(time.Time).IsZero()
	}
	if ti.isFlag(tiflagIsZeroerPtr) && v.CanAddr() {
		return rv2i(v.Addr()).(isZeroer).IsZero()
	}
	if ti.isFlag(tiflagIsZeroer) {
		return rv2i(v).(isZeroer).IsZero()
	}
	if ti.isFlag(tiflagComparable) {
		return rv2i(v) == rv2i(reflect.Zero(vt))
	}
	if !checkStruct {
		return false
	}
	// We only care about what we can encode/decode,
	// so that is what we use to check omitEmpty.
	for _, si := range ti.sfiSrc {
		sfv, valid := si.field(v, false)
		if valid && !isEmptyValue(sfv, tinfos, deref, checkStruct) {
			return false
		}
	}
	return true
}

// func roundFloat(x float64) float64 {
// 	t := math.Trunc(x)
// 	if math.Abs(x-t) >= 0.5 {
// 		return t + math.Copysign(1, x)
// 	}
// 	return t
// }

func panicToErr(h errDecorator, err *error) {
	// Note: This method MUST be called directly from defer i.e. defer panicToErr ...
	// else it seems the recover is not fully handled
	if recoverPanicToErr {
		if x := recover(); x != nil {
			// fmt.Printf("panic'ing with: %v\n", x)
			// debug.PrintStack()
			panicValToErr(h, x, err)
		}
	}
}

func isSliceBoundsError(s string) bool {
	return strings.Contains(s, "index out of range") ||
		strings.Contains(s, "slice bounds out of range")
}

func panicValToErr(h errDecorator, v interface{}, err *error) {
	d, dok := h.(*Decoder)
	switch xerr := v.(type) {
	case nil:
	case error:
		switch xerr {
		case nil:
		case io.EOF, io.ErrUnexpectedEOF, errEncoderNotInitialized, errDecoderNotInitialized:
			// treat as special (bubble up)
			*err = xerr
		default:
			if dok && d.bytes && isSliceBoundsError(xerr.Error()) {
				*err = io.EOF
			} else {
				h.wrapErr(xerr, err)
			}
		}
	case string:
		if xerr != "" {
			if dok && d.bytes && isSliceBoundsError(xerr) {
				*err = io.EOF
			} else {
				h.wrapErr(xerr, err)
			}
		}
	case fmt.Stringer:
		if xerr != nil {
			h.wrapErr(xerr, err)
		}
	default:
		h.wrapErr(v, err)
	}
}

func isImmutableKind(k reflect.Kind) (v bool) {
	// return immutableKindsSet[k]
	// since we know reflect.Kind is in range 0..31, then use the k%32 == k constraint
	return immutableKindsSet[k%reflect.Kind(len(immutableKindsSet))] // bounds-check-elimination
}

func usableByteSlice(bs []byte, slen int) []byte {
	if cap(bs) >= slen {
		if bs == nil {
			return []byte{}
		}
		return bs[:slen]
	}
	return make([]byte, slen)
}

// ----

type codecFnInfo struct {
	ti    *typeInfo
	xfFn  Ext
	xfTag uint64
	seq   seqType
	addrD bool
	addrF bool // if addrD, this says whether decode function can take a value or a ptr
	addrE bool
}

// codecFn encapsulates the captured variables and the encode function.
// This way, we only do some calculations one times, and pass to the
// code block that should be called (encapsulated in a function)
// instead of executing the checks every time.
type codecFn struct {
	i  codecFnInfo
	fe func(*Encoder, *codecFnInfo, reflect.Value)
	fd func(*Decoder, *codecFnInfo, reflect.Value)
	_  [1]uint64 // padding (cache-aligned)
}

type codecRtidFn struct {
	rtid uintptr
	fn   *codecFn
}

func makeExt(ext interface{}) Ext {
	if ext == nil {
		return &extFailWrapper{}
	}
	switch t := ext.(type) {
	case nil:
		return &extFailWrapper{}
	case Ext:
		return t
	case BytesExt:
		return &bytesExtWrapper{BytesExt: t}
	case InterfaceExt:
		return &interfaceExtWrapper{InterfaceExt: t}
	}
	return &extFailWrapper{}
}

func baseRV(v interface{}) (rv reflect.Value) {
	for rv = rv4i(v); rv.Kind() == reflect.Ptr; rv = rv.Elem() {
	}
	return
}

// ----

// these "checkOverflow" functions must be inlinable, and not call anybody.
// Overflow means that the value cannot be represented without wrapping/overflow.
// Overflow=false does not mean that the value can be represented without losing precision
// (especially for floating point).

type checkOverflow struct{}

// func (checkOverflow) Float16(f float64) (overflow bool) {
// 	panicv.errorf("unimplemented")
// 	if f < 0 {
// 		f = -f
// 	}
// 	return math.MaxFloat32 < f && f <= math.MaxFloat64
// }

func (checkOverflow) Float32(v float64) (overflow bool) {
	if v < 0 {
		v = -v
	}
	return math.MaxFloat32 < v && v <= math.MaxFloat64
}
func (checkOverflow) Uint(v uint64, bitsize uint8) (overflow bool) {
	if bitsize == 0 || bitsize >= 64 || v == 0 {
		return
	}
	if trunc := (v << (64 - bitsize)) >> (64 - bitsize); v != trunc {
		overflow = true
	}
	return
}
func (checkOverflow) Int(v int64, bitsize uint8) (overflow bool) {
	if bitsize == 0 || bitsize >= 64 || v == 0 {
		return
	}
	if trunc := (v << (64 - bitsize)) >> (64 - bitsize); v != trunc {
		overflow = true
	}
	return
}
func (checkOverflow) SignedInt(v uint64) (overflow bool) {
	//e.g. -127 to 128 for int8
	pos := (v >> 63) == 0
	ui2 := v & 0x7fffffffffffffff
	if pos {
		if ui2 > math.MaxInt64 {
			overflow = true
		}
	} else {
		if ui2 > math.MaxInt64-1 {
			overflow = true
		}
	}
	return
}

func (x checkOverflow) Float32V(v float64) float64 {
	if x.Float32(v) {
		panicv.errorf("float32 overflow: %v", v)
	}
	return v
}
func (x checkOverflow) UintV(v uint64, bitsize uint8) uint64 {
	if x.Uint(v, bitsize) {
		panicv.errorf("uint64 overflow: %v", v)
	}
	return v
}
func (x checkOverflow) IntV(v int64, bitsize uint8) int64 {
	if x.Int(v, bitsize) {
		panicv.errorf("int64 overflow: %v", v)
	}
	return v
}
func (x checkOverflow) SignedIntV(v uint64) int64 {
	if x.SignedInt(v) {
		panicv.errorf("uint64 to int64 overflow: %v", v)
	}
	return int64(v)
}

// ------------------ FLOATING POINT -----------------

func isNaN64(f float64) bool { return f != f }
func isNaN32(f float32) bool { return f != f }
func abs32(f float32) float32 {
	return math.Float32frombits(math.Float32bits(f) &^ (1 << 31))
}

// Per go spec, floats are represented in memory as
// IEEE single or double precision floating point values.
//
// We also looked at the source for stdlib math/modf.go,
// reviewed https://github.com/chewxy/math32
// and read wikipedia documents describing the formats.
//
// It became clear that we could easily look at the bits to determine
// whether any fraction exists.
//
// This is all we need for now.

func noFrac64(f float64) (v bool) {
	x := math.Float64bits(f)
	e := uint64(x>>52)&0x7FF - 1023 // uint(x>>shift)&mask - bias
	// clear top 12+e bits, the integer part; if the rest is 0, then no fraction.
	if e < 52 {
		// return x&((1<<64-1)>>(12+e)) == 0
		return x<<(12+e) == 0
	}
	return
}

func noFrac32(f float32) (v bool) {
	x := math.Float32bits(f)
	e := uint32(x>>23)&0xFF - 127 // uint(x>>shift)&mask - bias
	// clear top 9+e bits, the integer part; if the rest is 0, then no fraction.
	if e < 23 {
		// return x&((1<<32-1)>>(9+e)) == 0
		return x<<(9+e) == 0
	}
	return
}

// func noFrac(f float64) bool {
// 	_, frac := math.Modf(float64(f))
// 	return frac == 0
// }

// -----------------------

type ioFlusher interface {
	Flush() error
}

type ioPeeker interface {
	Peek(int) ([]byte, error)
}

type ioBuffered interface {
	Buffered() int
}

// -----------------------

type sfiRv struct {
	v *structFieldInfo
	r reflect.Value
}

// -----------------

type set []interface{}

func (s *set) add(v interface{}) (exists bool) {
	// e.ci is always nil, or len >= 1
	x := *s

	if x == nil {
		x = make([]interface{}, 1, 8)
		x[0] = v
		*s = x
		return
	}
	// typically, length will be 1. make this perform.
	if len(x) == 1 {
		if j := x[0]; j == 0 {
			x[0] = v
		} else if j == v {
			exists = true
		} else {
			x = append(x, v)
			*s = x
		}
		return
	}
	// check if it exists
	for _, j := range x {
		if j == v {
			exists = true
			return
		}
	}
	// try to replace a "deleted" slot
	for i, j := range x {
		if j == 0 {
			x[i] = v
			return
		}
	}
	// if unable to replace deleted slot, just append it.
	x = append(x, v)
	*s = x
	return
}

func (s *set) remove(v interface{}) (exists bool) {
	x := *s
	if len(x) == 0 {
		return
	}
	if len(x) == 1 {
		if x[0] == v {
			x[0] = 0
		}
		return
	}
	for i, j := range x {
		if j == v {
			exists = true
			x[i] = 0 // set it to 0, as way to delete it.
			// copy(x[i:], x[i+1:])
			// x = x[:len(x)-1]
			return
		}
	}
	return
}

// ------

// bitset types are better than [256]bool, because they permit the whole
// bitset array being on a single cache line and use less memory.
//
// Also, since pos is a byte (0-255), there's no bounds checks on indexing (cheap).
//
// We previously had bitset128 [16]byte, and bitset32 [4]byte, but those introduces
// bounds checking, so we discarded them, and everyone uses bitset256.
//
// given x > 0 and n > 0 and x is exactly 2^n, then pos/x === pos>>n AND pos%x === pos&(x-1).
// consequently, pos/32 === pos>>5, pos/16 === pos>>4, pos/8 === pos>>3, pos%8 == pos&7

type bitset256 [32]byte

func (x *bitset256) check(pos byte) uint8 {
	return x[pos>>3] & (1 << (pos & 7))
}

func (x *bitset256) isset(pos byte) bool {
	return x.check(pos) != 0
	// return x[pos>>3]&(1<<(pos&7)) != 0
}

// func (x *bitset256) issetv(pos byte) byte {
// 	return x[pos>>3] & (1 << (pos & 7))
// }

func (x *bitset256) set(pos byte) {
	x[pos>>3] |= (1 << (pos & 7))
}

type bitset32 uint32

func (x bitset32) set(pos byte) bitset32 {
	return x | (1 << pos)
}

func (x bitset32) check(pos byte) uint32 {
	return uint32(x) & (1 << pos)
}
func (x bitset32) isset(pos byte) bool {
	return x.check(pos) != 0
	// return x&(1<<pos) != 0
}

// func (x *bitset256) unset(pos byte) {
// 	x[pos>>3] &^= (1 << (pos & 7))
// }

// type bit2set256 [64]byte

// func (x *bit2set256) set(pos byte, v1, v2 bool) {
// 	var pos2 uint8 = (pos & 3) << 1 // returning 0, 2, 4 or 6
// 	if v1 {
// 		x[pos>>2] |= 1 << (pos2 + 1)
// 	}
// 	if v2 {
// 		x[pos>>2] |= 1 << pos2
// 	}
// }
// func (x *bit2set256) get(pos byte) uint8 {
// 	var pos2 uint8 = (pos & 3) << 1     // returning 0, 2, 4 or 6
// 	return x[pos>>2] << (6 - pos2) >> 6 // 11000000 -> 00000011
// }

// ------------

type panicHdl struct{}

func (panicHdl) errorv(err error) {
	if err != nil {
		panic(err)
	}
}

func (panicHdl) errorstr(message string) {
	if message != "" {
		panic(message)
	}
}

func (panicHdl) errorf(format string, params ...interface{}) {
	if len(params) != 0 {
		panic(fmt.Sprintf(format, params...))
	}
	if len(params) == 0 {
		panic(format)
	}
	panic("undefined error")
}

// ----------------------------------------------------

type errDecorator interface {
	wrapErr(in interface{}, out *error)
}

type errDecoratorDef struct{}

func (errDecoratorDef) wrapErr(v interface{}, e *error) { *e = fmt.Errorf("%v", v) }

// ----------------------------------------------------

type must struct{}

func (must) String(s string, err error) string {
	if err != nil {
		panicv.errorv(err)
	}
	return s
}
func (must) Int(s int64, err error) int64 {
	if err != nil {
		panicv.errorv(err)
	}
	return s
}
func (must) Uint(s uint64, err error) uint64 {
	if err != nil {
		panicv.errorv(err)
	}
	return s
}
func (must) Float(s float64, err error) float64 {
	if err != nil {
		panicv.errorv(err)
	}
	return s
}

// -------------------

func freelistCapacity(length int) (capacity int) {
	for capacity = 8; capacity < length; capacity *= 2 {
	}
	return
}

type bytesFreelist [][]byte

func (x *bytesFreelist) get(length int) (out []byte) {
	var j int = -1
	for i := 0; i < len(*x); i++ {
		if cap((*x)[i]) >= length && (j == -1 || cap((*x)[j]) > cap((*x)[i])) {
			j = i
		}
	}
	if j == -1 {
		return make([]byte, length, freelistCapacity(length))
	}
	out = (*x)[j][:length]
	(*x)[j] = nil
	for i := 0; i < len(out); i++ {
		out[i] = 0
	}
	return
}

func (x *bytesFreelist) put(v []byte) {
	if len(v) == 0 {
		return
	}
	for i := 0; i < len(*x); i++ {
		if cap((*x)[i]) == 0 {
			(*x)[i] = v
			return
		}
	}
	*x = append(*x, v)
}

func (x *bytesFreelist) check(v []byte, length int) (out []byte) {
	if cap(v) < length {
		x.put(v)
		return x.get(length)
	}
	return v[:length]
}

// -------------------------

type sfiRvFreelist [][]sfiRv

func (x *sfiRvFreelist) get(length int) (out []sfiRv) {
	var j int = -1
	for i := 0; i < len(*x); i++ {
		if cap((*x)[i]) >= length && (j == -1 || cap((*x)[j]) > cap((*x)[i])) {
			j = i
		}
	}
	if j == -1 {
		return make([]sfiRv, length, freelistCapacity(length))
	}
	out = (*x)[j][:length]
	(*x)[j] = nil
	for i := 0; i < len(out); i++ {
		out[i] = sfiRv{}
	}
	return
}

func (x *sfiRvFreelist) put(v []sfiRv) {
	for i := 0; i < len(*x); i++ {
		if cap((*x)[i]) == 0 {
			(*x)[i] = v
			return
		}
	}
	*x = append(*x, v)
}

// -----------

// xdebugf printf. the message in red on the terminal.
// Use it in place of fmt.Printf (which it calls internally)
func xdebugf(pattern string, args ...interface{}) {
	xdebugAnyf("31", pattern, args...)
}

// xdebug2f printf. the message in blue on the terminal.
// Use it in place of fmt.Printf (which it calls internally)
func xdebug2f(pattern string, args ...interface{}) {
	xdebugAnyf("34", pattern, args...)
}

func xdebugAnyf(colorcode, pattern string, args ...interface{}) {
	if !xdebug {
		return
	}
	var delim string
	if len(pattern) > 0 && pattern[len(pattern)-1] != '\n' {
		delim = "\n"
	}
	fmt.Printf("\033[1;"+colorcode+"m"+pattern+delim+"\033[0m", args...)
	// os.Stderr.Flush()
}

// register these here, so that staticcheck stops barfing
var _ = xdebug2f
var _ = xdebugf
var _ = isNaN32