1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
// Package hdrhistogram provides an implementation of Gil Tene's HDR Histogram
// data structure. The HDR Histogram allows for fast and accurate analysis of
// the extreme ranges of data with non-normal distributions, like latency.
package hdrhistogram

import (
	"fmt"
	"math"
)

// A Bracket is a part of a cumulative distribution.
type Bracket struct {
	Quantile       float64
	Count, ValueAt int64
}

// A Snapshot is an exported view of a Histogram, useful for serializing them.
// A Histogram can be constructed from it by passing it to Import.
type Snapshot struct {
	LowestTrackableValue  int64
	HighestTrackableValue int64
	SignificantFigures    int64
	Counts                []int64
}

// A Histogram is a lossy data structure used to record the distribution of
// non-normally distributed data (like latency) with a high degree of accuracy
// and a bounded degree of precision.
type Histogram struct {
	lowestTrackableValue        int64
	highestTrackableValue       int64
	unitMagnitude               int64
	significantFigures          int64
	subBucketHalfCountMagnitude int32
	subBucketHalfCount          int32
	subBucketMask               int64
	subBucketCount              int32
	bucketCount                 int32
	countsLen                   int32
	totalCount                  int64
	counts                      []int64
}

// New returns a new Histogram instance capable of tracking values in the given
// range and with the given amount of precision.
func New(minValue, maxValue int64, sigfigs int) *Histogram {
	if sigfigs < 1 || 5 < sigfigs {
		panic(fmt.Errorf("sigfigs must be [1,5] (was %d)", sigfigs))
	}

	largestValueWithSingleUnitResolution := 2 * math.Pow10(sigfigs)
	subBucketCountMagnitude := int32(math.Ceil(math.Log2(float64(largestValueWithSingleUnitResolution))))

	subBucketHalfCountMagnitude := subBucketCountMagnitude
	if subBucketHalfCountMagnitude < 1 {
		subBucketHalfCountMagnitude = 1
	}
	subBucketHalfCountMagnitude--

	unitMagnitude := int32(math.Floor(math.Log2(float64(minValue))))
	if unitMagnitude < 0 {
		unitMagnitude = 0
	}

	subBucketCount := int32(math.Pow(2, float64(subBucketHalfCountMagnitude)+1))

	subBucketHalfCount := subBucketCount / 2
	subBucketMask := int64(subBucketCount-1) << uint(unitMagnitude)

	// determine exponent range needed to support the trackable value with no
	// overflow:
	smallestUntrackableValue := int64(subBucketCount) << uint(unitMagnitude)
	bucketsNeeded := int32(1)
	for smallestUntrackableValue < maxValue {
		smallestUntrackableValue <<= 1
		bucketsNeeded++
	}

	bucketCount := bucketsNeeded
	countsLen := (bucketCount + 1) * (subBucketCount / 2)

	return &Histogram{
		lowestTrackableValue:        minValue,
		highestTrackableValue:       maxValue,
		unitMagnitude:               int64(unitMagnitude),
		significantFigures:          int64(sigfigs),
		subBucketHalfCountMagnitude: subBucketHalfCountMagnitude,
		subBucketHalfCount:          subBucketHalfCount,
		subBucketMask:               subBucketMask,
		subBucketCount:              subBucketCount,
		bucketCount:                 bucketCount,
		countsLen:                   countsLen,
		totalCount:                  0,
		counts:                      make([]int64, countsLen),
	}
}

// ByteSize returns an estimate of the amount of memory allocated to the
// histogram in bytes.
//
// N.B.: This does not take into account the overhead for slices, which are
// small, constant, and specific to the compiler version.
func (h *Histogram) ByteSize() int {
	return 6*8 + 5*4 + len(h.counts)*8
}

// Merge merges the data stored in the given histogram with the receiver,
// returning the number of recorded values which had to be dropped.
func (h *Histogram) Merge(from *Histogram) (dropped int64) {
	i := from.rIterator()
	for i.next() {
		v := i.valueFromIdx
		c := i.countAtIdx

		if h.RecordValues(v, c) != nil {
			dropped += c
		}
	}

	return
}

// TotalCount returns total number of values recorded.
func (h *Histogram) TotalCount() int64 {
	return h.totalCount
}

// Max returns the approximate maximum recorded value.
func (h *Histogram) Max() int64 {
	var max int64
	i := h.iterator()
	for i.next() {
		if i.countAtIdx != 0 {
			max = i.highestEquivalentValue
		}
	}
	return h.highestEquivalentValue(max)
}

// Min returns the approximate minimum recorded value.
func (h *Histogram) Min() int64 {
	var min int64
	i := h.iterator()
	for i.next() {
		if i.countAtIdx != 0 && min == 0 {
			min = i.highestEquivalentValue
			break
		}
	}
	return h.lowestEquivalentValue(min)
}

// Mean returns the approximate arithmetic mean of the recorded values.
func (h *Histogram) Mean() float64 {
	if h.totalCount == 0 {
		return 0
	}
	var total int64
	i := h.iterator()
	for i.next() {
		if i.countAtIdx != 0 {
			total += i.countAtIdx * h.medianEquivalentValue(i.valueFromIdx)
		}
	}
	return float64(total) / float64(h.totalCount)
}

// StdDev returns the approximate standard deviation of the recorded values.
func (h *Histogram) StdDev() float64 {
	if h.totalCount == 0 {
		return 0
	}

	mean := h.Mean()
	geometricDevTotal := 0.0

	i := h.iterator()
	for i.next() {
		if i.countAtIdx != 0 {
			dev := float64(h.medianEquivalentValue(i.valueFromIdx)) - mean
			geometricDevTotal += (dev * dev) * float64(i.countAtIdx)
		}
	}

	return math.Sqrt(geometricDevTotal / float64(h.totalCount))
}

// Reset deletes all recorded values and restores the histogram to its original
// state.
func (h *Histogram) Reset() {
	h.totalCount = 0
	for i := range h.counts {
		h.counts[i] = 0
	}
}

// RecordValue records the given value, returning an error if the value is out
// of range.
func (h *Histogram) RecordValue(v int64) error {
	return h.RecordValues(v, 1)
}

// RecordCorrectedValue records the given value, correcting for stalls in the
// recording process. This only works for processes which are recording values
// at an expected interval (e.g., doing jitter analysis). Processes which are
// recording ad-hoc values (e.g., latency for incoming requests) can't take
// advantage of this.
func (h *Histogram) RecordCorrectedValue(v, expectedInterval int64) error {
	if err := h.RecordValue(v); err != nil {
		return err
	}

	if expectedInterval <= 0 || v <= expectedInterval {
		return nil
	}

	missingValue := v - expectedInterval
	for missingValue >= expectedInterval {
		if err := h.RecordValue(missingValue); err != nil {
			return err
		}
		missingValue -= expectedInterval
	}

	return nil
}

// RecordValues records n occurrences of the given value, returning an error if
// the value is out of range.
func (h *Histogram) RecordValues(v, n int64) error {
	idx := h.countsIndexFor(v)
	if idx < 0 || int(h.countsLen) <= idx {
		return fmt.Errorf("value %d is too large to be recorded", v)
	}
	h.counts[idx] += n
	h.totalCount += n

	return nil
}

// ValueAtQuantile returns the recorded value at the given quantile (0..100).
func (h *Histogram) ValueAtQuantile(q float64) int64 {
	if q > 100 {
		q = 100
	}

	total := int64(0)
	countAtPercentile := int64(((q / 100) * float64(h.totalCount)) + 0.5)

	i := h.iterator()
	for i.next() {
		total += i.countAtIdx
		if total >= countAtPercentile {
			return h.highestEquivalentValue(i.valueFromIdx)
		}
	}

	return 0
}

// CumulativeDistribution returns an ordered list of brackets of the
// distribution of recorded values.
func (h *Histogram) CumulativeDistribution() []Bracket {
	var result []Bracket

	i := h.pIterator(1)
	for i.next() {
		result = append(result, Bracket{
			Quantile: i.percentile,
			Count:    i.countToIdx,
			ValueAt:  i.highestEquivalentValue,
		})
	}

	return result
}

// SignificantFigures returns the significant figures used to create the
// histogram
func (h *Histogram) SignificantFigures() int64 {
	return h.significantFigures
}

// LowestTrackableValue returns the lower bound on values that will be added
// to the histogram
func (h *Histogram) LowestTrackableValue() int64 {
	return h.lowestTrackableValue
}

// HighestTrackableValue returns the upper bound on values that will be added
// to the histogram
func (h *Histogram) HighestTrackableValue() int64 {
	return h.highestTrackableValue
}

// Histogram bar for plotting
type Bar struct {
	From, To, Count int64
}

// Pretty print as csv for easy plotting
func (b Bar) String() string {
	return fmt.Sprintf("%v, %v, %v\n", b.From, b.To, b.Count)
}

// Distribution returns an ordered list of bars of the
// distribution of recorded values, counts can be normalized to a probability
func (h *Histogram) Distribution() (result []Bar) {
	i := h.iterator()
	for i.next() {
		result = append(result, Bar{
			Count: i.countAtIdx,
			From:  h.lowestEquivalentValue(i.valueFromIdx),
			To:    i.highestEquivalentValue,
		})
	}

	return result
}

// Equals returns true if the two Histograms are equivalent, false if not.
func (h *Histogram) Equals(other *Histogram) bool {
	switch {
	case
		h.lowestTrackableValue != other.lowestTrackableValue,
		h.highestTrackableValue != other.highestTrackableValue,
		h.unitMagnitude != other.unitMagnitude,
		h.significantFigures != other.significantFigures,
		h.subBucketHalfCountMagnitude != other.subBucketHalfCountMagnitude,
		h.subBucketHalfCount != other.subBucketHalfCount,
		h.subBucketMask != other.subBucketMask,
		h.subBucketCount != other.subBucketCount,
		h.bucketCount != other.bucketCount,
		h.countsLen != other.countsLen,
		h.totalCount != other.totalCount:
		return false
	default:
		for i, c := range h.counts {
			if c != other.counts[i] {
				return false
			}
		}
	}
	return true
}

// Export returns a snapshot view of the Histogram. This can be later passed to
// Import to construct a new Histogram with the same state.
func (h *Histogram) Export() *Snapshot {
	return &Snapshot{
		LowestTrackableValue:  h.lowestTrackableValue,
		HighestTrackableValue: h.highestTrackableValue,
		SignificantFigures:    h.significantFigures,
		Counts:                append([]int64(nil), h.counts...), // copy
	}
}

// Import returns a new Histogram populated from the Snapshot data (which the
// caller must stop accessing).
func Import(s *Snapshot) *Histogram {
	h := New(s.LowestTrackableValue, s.HighestTrackableValue, int(s.SignificantFigures))
	h.counts = s.Counts
	totalCount := int64(0)
	for i := int32(0); i < h.countsLen; i++ {
		countAtIndex := h.counts[i]
		if countAtIndex > 0 {
			totalCount += countAtIndex
		}
	}
	h.totalCount = totalCount
	return h
}

func (h *Histogram) iterator() *iterator {
	return &iterator{
		h:            h,
		subBucketIdx: -1,
	}
}

func (h *Histogram) rIterator() *rIterator {
	return &rIterator{
		iterator: iterator{
			h:            h,
			subBucketIdx: -1,
		},
	}
}

func (h *Histogram) pIterator(ticksPerHalfDistance int32) *pIterator {
	return &pIterator{
		iterator: iterator{
			h:            h,
			subBucketIdx: -1,
		},
		ticksPerHalfDistance: ticksPerHalfDistance,
	}
}

func (h *Histogram) sizeOfEquivalentValueRange(v int64) int64 {
	bucketIdx := h.getBucketIndex(v)
	subBucketIdx := h.getSubBucketIdx(v, bucketIdx)
	adjustedBucket := bucketIdx
	if subBucketIdx >= h.subBucketCount {
		adjustedBucket++
	}
	return int64(1) << uint(h.unitMagnitude+int64(adjustedBucket))
}

func (h *Histogram) valueFromIndex(bucketIdx, subBucketIdx int32) int64 {
	return int64(subBucketIdx) << uint(int64(bucketIdx)+h.unitMagnitude)
}

func (h *Histogram) lowestEquivalentValue(v int64) int64 {
	bucketIdx := h.getBucketIndex(v)
	subBucketIdx := h.getSubBucketIdx(v, bucketIdx)
	return h.valueFromIndex(bucketIdx, subBucketIdx)
}

func (h *Histogram) nextNonEquivalentValue(v int64) int64 {
	return h.lowestEquivalentValue(v) + h.sizeOfEquivalentValueRange(v)
}

func (h *Histogram) highestEquivalentValue(v int64) int64 {
	return h.nextNonEquivalentValue(v) - 1
}

func (h *Histogram) medianEquivalentValue(v int64) int64 {
	return h.lowestEquivalentValue(v) + (h.sizeOfEquivalentValueRange(v) >> 1)
}

func (h *Histogram) getCountAtIndex(bucketIdx, subBucketIdx int32) int64 {
	return h.counts[h.countsIndex(bucketIdx, subBucketIdx)]
}

func (h *Histogram) countsIndex(bucketIdx, subBucketIdx int32) int32 {
	bucketBaseIdx := (bucketIdx + 1) << uint(h.subBucketHalfCountMagnitude)
	offsetInBucket := subBucketIdx - h.subBucketHalfCount
	return bucketBaseIdx + offsetInBucket
}

func (h *Histogram) getBucketIndex(v int64) int32 {
	pow2Ceiling := bitLen(v | h.subBucketMask)
	return int32(pow2Ceiling - int64(h.unitMagnitude) -
		int64(h.subBucketHalfCountMagnitude+1))
}

func (h *Histogram) getSubBucketIdx(v int64, idx int32) int32 {
	return int32(v >> uint(int64(idx)+int64(h.unitMagnitude)))
}

func (h *Histogram) countsIndexFor(v int64) int {
	bucketIdx := h.getBucketIndex(v)
	subBucketIdx := h.getSubBucketIdx(v, bucketIdx)
	return int(h.countsIndex(bucketIdx, subBucketIdx))
}

type iterator struct {
	h                                    *Histogram
	bucketIdx, subBucketIdx              int32
	countAtIdx, countToIdx, valueFromIdx int64
	highestEquivalentValue               int64
}

func (i *iterator) next() bool {
	if i.countToIdx >= i.h.totalCount {
		return false
	}

	// increment bucket
	i.subBucketIdx++
	if i.subBucketIdx >= i.h.subBucketCount {
		i.subBucketIdx = i.h.subBucketHalfCount
		i.bucketIdx++
	}

	if i.bucketIdx >= i.h.bucketCount {
		return false
	}

	i.countAtIdx = i.h.getCountAtIndex(i.bucketIdx, i.subBucketIdx)
	i.countToIdx += i.countAtIdx
	i.valueFromIdx = i.h.valueFromIndex(i.bucketIdx, i.subBucketIdx)
	i.highestEquivalentValue = i.h.highestEquivalentValue(i.valueFromIdx)

	return true
}

type rIterator struct {
	iterator
	countAddedThisStep int64
}

func (r *rIterator) next() bool {
	for r.iterator.next() {
		if r.countAtIdx != 0 {
			r.countAddedThisStep = r.countAtIdx
			return true
		}
	}
	return false
}

type pIterator struct {
	iterator
	seenLastValue          bool
	ticksPerHalfDistance   int32
	percentileToIteratorTo float64
	percentile             float64
}

func (p *pIterator) next() bool {
	if !(p.countToIdx < p.h.totalCount) {
		if p.seenLastValue {
			return false
		}

		p.seenLastValue = true
		p.percentile = 100

		return true
	}

	if p.subBucketIdx == -1 && !p.iterator.next() {
		return false
	}

	var done = false
	for !done {
		currentPercentile := (100.0 * float64(p.countToIdx)) / float64(p.h.totalCount)
		if p.countAtIdx != 0 && p.percentileToIteratorTo <= currentPercentile {
			p.percentile = p.percentileToIteratorTo
			halfDistance := math.Trunc(math.Pow(2, math.Trunc(math.Log2(100.0/(100.0-p.percentileToIteratorTo)))+1))
			percentileReportingTicks := float64(p.ticksPerHalfDistance) * halfDistance
			p.percentileToIteratorTo += 100.0 / percentileReportingTicks
			return true
		}
		done = !p.iterator.next()
	}

	return true
}

func bitLen(x int64) (n int64) {
	for ; x >= 0x8000; x >>= 16 {
		n += 16
	}
	if x >= 0x80 {
		x >>= 8
		n += 8
	}
	if x >= 0x8 {
		x >>= 4
		n += 4
	}
	if x >= 0x2 {
		x >>= 2
		n += 2
	}
	if x >= 0x1 {
		n++
	}
	return
}