encode.go 34.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
// Copyright (c) 2012-2018 Ugorji Nwoke. All rights reserved.
// Use of this source code is governed by a MIT license found in the LICENSE file.

package codec

import (
	"encoding"
	"errors"
	"fmt"
	"io"
	"reflect"
	"sort"
	"strconv"
	"time"
)

// defEncByteBufSize is the default size of []byte used
// for bufio buffer or []byte (when nil passed)
const defEncByteBufSize = 1 << 10 // 4:16, 6:64, 8:256, 10:1024

var errEncoderNotInitialized = errors.New("Encoder not initialized")

// encDriver abstracts the actual codec (binc vs msgpack, etc)
type encDriver interface {
	EncodeNil()
	EncodeInt(i int64)
	EncodeUint(i uint64)
	EncodeBool(b bool)
	EncodeFloat32(f float32)
	EncodeFloat64(f float64)
	EncodeRawExt(re *RawExt)
	EncodeExt(v interface{}, xtag uint64, ext Ext)
	// EncodeString using cUTF8, honor'ing StringToRaw flag
	EncodeString(v string)
	EncodeStringBytesRaw(v []byte)
	EncodeTime(time.Time)
	WriteArrayStart(length int)
	WriteArrayEnd()
	WriteMapStart(length int)
	WriteMapEnd()

	reset()
	atEndOfEncode()
	encoder() *Encoder
}

type encDriverContainerTracker interface {
	WriteArrayElem()
	WriteMapElemKey()
	WriteMapElemValue()
}

type encodeError struct {
	codecError
}

func (e encodeError) Error() string {
	return fmt.Sprintf("%s encode error: %v", e.name, e.err)
}

type encDriverNoopContainerWriter struct{}

func (encDriverNoopContainerWriter) WriteArrayStart(length int) {}
func (encDriverNoopContainerWriter) WriteArrayEnd()             {}
func (encDriverNoopContainerWriter) WriteMapStart(length int)   {}
func (encDriverNoopContainerWriter) WriteMapEnd()               {}
func (encDriverNoopContainerWriter) atEndOfEncode()             {}

// EncodeOptions captures configuration options during encode.
type EncodeOptions struct {
	// WriterBufferSize is the size of the buffer used when writing.
	//
	// if > 0, we use a smart buffer internally for performance purposes.
	WriterBufferSize int

	// ChanRecvTimeout is the timeout used when selecting from a chan.
	//
	// Configuring this controls how we receive from a chan during the encoding process.
	//   - If ==0, we only consume the elements currently available in the chan.
	//   - if  <0, we consume until the chan is closed.
	//   - If  >0, we consume until this timeout.
	ChanRecvTimeout time.Duration

	// StructToArray specifies to encode a struct as an array, and not as a map
	StructToArray bool

	// Canonical representation means that encoding a value will always result in the same
	// sequence of bytes.
	//
	// This only affects maps, as the iteration order for maps is random.
	//
	// The implementation MAY use the natural sort order for the map keys if possible:
	//
	//     - If there is a natural sort order (ie for number, bool, string or []byte keys),
	//       then the map keys are first sorted in natural order and then written
	//       with corresponding map values to the strema.
	//     - If there is no natural sort order, then the map keys will first be
	//       encoded into []byte, and then sorted,
	//       before writing the sorted keys and the corresponding map values to the stream.
	//
	Canonical bool

	// CheckCircularRef controls whether we check for circular references
	// and error fast during an encode.
	//
	// If enabled, an error is received if a pointer to a struct
	// references itself either directly or through one of its fields (iteratively).
	//
	// This is opt-in, as there may be a performance hit to checking circular references.
	CheckCircularRef bool

	// RecursiveEmptyCheck controls whether we descend into interfaces, structs and pointers
	// when checking if a value is empty.
	//
	// Note that this may make OmitEmpty more expensive, as it incurs a lot more reflect calls.
	RecursiveEmptyCheck bool

	// Raw controls whether we encode Raw values.
	// This is a "dangerous" option and must be explicitly set.
	// If set, we blindly encode Raw values as-is, without checking
	// if they are a correct representation of a value in that format.
	// If unset, we error out.
	Raw bool

	// StringToRaw controls how strings are encoded.
	//
	// As a go string is just an (immutable) sequence of bytes,
	// it can be encoded either as raw bytes or as a UTF string.
	//
	// By default, strings are encoded as UTF-8.
	// but can be treated as []byte during an encode.
	//
	// Note that things which we know (by definition) to be UTF-8
	// are ALWAYS encoded as UTF-8 strings.
	// These include encoding.TextMarshaler, time.Format calls, struct field names, etc.
	StringToRaw bool

	// // AsSymbols defines what should be encoded as symbols.
	// //
	// // Encoding as symbols can reduce the encoded size significantly.
	// //
	// // However, during decoding, each string to be encoded as a symbol must
	// // be checked to see if it has been seen before. Consequently, encoding time
	// // will increase if using symbols, because string comparisons has a clear cost.
	// //
	// // Sample values:
	// //   AsSymbolNone
	// //   AsSymbolAll
	// //   AsSymbolMapStringKeys
	// //   AsSymbolMapStringKeysFlag | AsSymbolStructFieldNameFlag
	// AsSymbols AsSymbolFlag
}

// ---------------------------------------------

func (e *Encoder) rawExt(f *codecFnInfo, rv reflect.Value) {
	e.e.EncodeRawExt(rv2i(rv).(*RawExt))
}

func (e *Encoder) ext(f *codecFnInfo, rv reflect.Value) {
	e.e.EncodeExt(rv2i(rv), f.xfTag, f.xfFn)
}

func (e *Encoder) selferMarshal(f *codecFnInfo, rv reflect.Value) {
	rv2i(rv).(Selfer).CodecEncodeSelf(e)
}

func (e *Encoder) binaryMarshal(f *codecFnInfo, rv reflect.Value) {
	bs, fnerr := rv2i(rv).(encoding.BinaryMarshaler).MarshalBinary()
	e.marshalRaw(bs, fnerr)
}

func (e *Encoder) textMarshal(f *codecFnInfo, rv reflect.Value) {
	bs, fnerr := rv2i(rv).(encoding.TextMarshaler).MarshalText()
	e.marshalUtf8(bs, fnerr)
}

func (e *Encoder) jsonMarshal(f *codecFnInfo, rv reflect.Value) {
	bs, fnerr := rv2i(rv).(jsonMarshaler).MarshalJSON()
	e.marshalAsis(bs, fnerr)
}

func (e *Encoder) raw(f *codecFnInfo, rv reflect.Value) {
	e.rawBytes(rv2i(rv).(Raw))
}

func (e *Encoder) kBool(f *codecFnInfo, rv reflect.Value) {
	e.e.EncodeBool(rvGetBool(rv))
}

func (e *Encoder) kTime(f *codecFnInfo, rv reflect.Value) {
	e.e.EncodeTime(rvGetTime(rv))
}

func (e *Encoder) kString(f *codecFnInfo, rv reflect.Value) {
	e.e.EncodeString(rvGetString(rv))
}

func (e *Encoder) kFloat64(f *codecFnInfo, rv reflect.Value) {
	e.e.EncodeFloat64(rvGetFloat64(rv))
}

func (e *Encoder) kFloat32(f *codecFnInfo, rv reflect.Value) {
	e.e.EncodeFloat32(rvGetFloat32(rv))
}

func (e *Encoder) kInt(f *codecFnInfo, rv reflect.Value) {
	e.e.EncodeInt(int64(rvGetInt(rv)))
}

func (e *Encoder) kInt8(f *codecFnInfo, rv reflect.Value) {
	e.e.EncodeInt(int64(rvGetInt8(rv)))
}

func (e *Encoder) kInt16(f *codecFnInfo, rv reflect.Value) {
	e.e.EncodeInt(int64(rvGetInt16(rv)))
}

func (e *Encoder) kInt32(f *codecFnInfo, rv reflect.Value) {
	e.e.EncodeInt(int64(rvGetInt32(rv)))
}

func (e *Encoder) kInt64(f *codecFnInfo, rv reflect.Value) {
	e.e.EncodeInt(int64(rvGetInt64(rv)))
}

func (e *Encoder) kUint(f *codecFnInfo, rv reflect.Value) {
	e.e.EncodeUint(uint64(rvGetUint(rv)))
}

func (e *Encoder) kUint8(f *codecFnInfo, rv reflect.Value) {
	e.e.EncodeUint(uint64(rvGetUint8(rv)))
}

func (e *Encoder) kUint16(f *codecFnInfo, rv reflect.Value) {
	e.e.EncodeUint(uint64(rvGetUint16(rv)))
}

func (e *Encoder) kUint32(f *codecFnInfo, rv reflect.Value) {
	e.e.EncodeUint(uint64(rvGetUint32(rv)))
}

func (e *Encoder) kUint64(f *codecFnInfo, rv reflect.Value) {
	e.e.EncodeUint(uint64(rvGetUint64(rv)))
}

func (e *Encoder) kUintptr(f *codecFnInfo, rv reflect.Value) {
	e.e.EncodeUint(uint64(rvGetUintptr(rv)))
}

func (e *Encoder) kInvalid(f *codecFnInfo, rv reflect.Value) {
	e.e.EncodeNil()
}

func (e *Encoder) kErr(f *codecFnInfo, rv reflect.Value) {
	e.errorf("unsupported kind %s, for %#v", rv.Kind(), rv)
}

func chanToSlice(rv reflect.Value, rtslice reflect.Type, timeout time.Duration) (rvcs reflect.Value) {
	rvcs = reflect.Zero(rtslice)
	if timeout < 0 { // consume until close
		for {
			recv, recvOk := rv.Recv()
			if !recvOk {
				break
			}
			rvcs = reflect.Append(rvcs, recv)
		}
	} else {
		cases := make([]reflect.SelectCase, 2)
		cases[0] = reflect.SelectCase{Dir: reflect.SelectRecv, Chan: rv}
		if timeout == 0 {
			cases[1] = reflect.SelectCase{Dir: reflect.SelectDefault}
		} else {
			tt := time.NewTimer(timeout)
			cases[1] = reflect.SelectCase{Dir: reflect.SelectRecv, Chan: rv4i(tt.C)}
		}
		for {
			chosen, recv, recvOk := reflect.Select(cases)
			if chosen == 1 || !recvOk {
				break
			}
			rvcs = reflect.Append(rvcs, recv)
		}
	}
	return
}

func (e *Encoder) kSeqFn(rtelem reflect.Type) (fn *codecFn) {
	for rtelem.Kind() == reflect.Ptr {
		rtelem = rtelem.Elem()
	}
	// if kind is reflect.Interface, do not pre-determine the
	// encoding type, because preEncodeValue may break it down to
	// a concrete type and kInterface will bomb.
	if rtelem.Kind() != reflect.Interface {
		fn = e.h.fn(rtelem)
	}
	return
}

func (e *Encoder) kSliceWMbs(rv reflect.Value, ti *typeInfo) {
	var l = rvGetSliceLen(rv)
	if l == 0 {
		e.mapStart(0)
	} else {
		if l%2 == 1 {
			e.errorf("mapBySlice requires even slice length, but got %v", l)
			return
		}
		e.mapStart(l / 2)
		fn := e.kSeqFn(ti.elem)
		for j := 0; j < l; j++ {
			if j%2 == 0 {
				e.mapElemKey()
			} else {
				e.mapElemValue()
			}
			e.encodeValue(rvSliceIndex(rv, j, ti), fn)
		}
	}
	e.mapEnd()
}

func (e *Encoder) kSliceW(rv reflect.Value, ti *typeInfo) {
	var l = rvGetSliceLen(rv)
	e.arrayStart(l)
	if l > 0 {
		fn := e.kSeqFn(ti.elem)
		for j := 0; j < l; j++ {
			e.arrayElem()
			e.encodeValue(rvSliceIndex(rv, j, ti), fn)
		}
	}
	e.arrayEnd()
}

func (e *Encoder) kSeqWMbs(rv reflect.Value, ti *typeInfo) {
	var l = rv.Len()
	if l == 0 {
		e.mapStart(0)
	} else {
		if l%2 == 1 {
			e.errorf("mapBySlice requires even slice length, but got %v", l)
			return
		}
		e.mapStart(l / 2)
		fn := e.kSeqFn(ti.elem)
		for j := 0; j < l; j++ {
			if j%2 == 0 {
				e.mapElemKey()
			} else {
				e.mapElemValue()
			}
			e.encodeValue(rv.Index(j), fn)
		}
	}
	e.mapEnd()
}

func (e *Encoder) kSeqW(rv reflect.Value, ti *typeInfo) {
	var l = rv.Len()
	e.arrayStart(l)
	if l > 0 {
		fn := e.kSeqFn(ti.elem)
		for j := 0; j < l; j++ {
			e.arrayElem()
			e.encodeValue(rv.Index(j), fn)
		}
	}
	e.arrayEnd()
}

func (e *Encoder) kChan(f *codecFnInfo, rv reflect.Value) {
	if rvIsNil(rv) {
		e.e.EncodeNil()
		return
	}
	if f.ti.chandir&uint8(reflect.RecvDir) == 0 {
		e.errorf("send-only channel cannot be encoded")
		return
	}
	if !f.ti.mbs && uint8TypId == rt2id(f.ti.elem) {
		e.kSliceBytesChan(rv)
		return
	}
	rtslice := reflect.SliceOf(f.ti.elem)
	rv = chanToSlice(rv, rtslice, e.h.ChanRecvTimeout)
	ti := e.h.getTypeInfo(rt2id(rtslice), rtslice)
	if f.ti.mbs {
		e.kSliceWMbs(rv, ti)
	} else {
		e.kSliceW(rv, ti)
	}
}

func (e *Encoder) kSlice(f *codecFnInfo, rv reflect.Value) {
	if rvIsNil(rv) {
		e.e.EncodeNil()
		return
	}
	if f.ti.mbs {
		e.kSliceWMbs(rv, f.ti)
	} else {
		if f.ti.rtid == uint8SliceTypId || uint8TypId == rt2id(f.ti.elem) {
			e.e.EncodeStringBytesRaw(rvGetBytes(rv))
		} else {
			e.kSliceW(rv, f.ti)
		}
	}
}

func (e *Encoder) kArray(f *codecFnInfo, rv reflect.Value) {
	if f.ti.mbs {
		e.kSeqWMbs(rv, f.ti)
	} else {
		if uint8TypId == rt2id(f.ti.elem) {
			e.e.EncodeStringBytesRaw(rvGetArrayBytesRO(rv, e.b[:]))
		} else {
			e.kSeqW(rv, f.ti)
		}
	}
}

func (e *Encoder) kSliceBytesChan(rv reflect.Value) {
	// do not use range, so that the number of elements encoded
	// does not change, and encoding does not hang waiting on someone to close chan.

	// for b := range rv2i(rv).(<-chan byte) { bs = append(bs, b) }
	// ch := rv2i(rv).(<-chan byte) // fix error - that this is a chan byte, not a <-chan byte.

	bs := e.b[:0]
	irv := rv2i(rv)
	ch, ok := irv.(<-chan byte)
	if !ok {
		ch = irv.(chan byte)
	}

L1:
	switch timeout := e.h.ChanRecvTimeout; {
	case timeout == 0: // only consume available
		for {
			select {
			case b := <-ch:
				bs = append(bs, b)
			default:
				break L1
			}
		}
	case timeout > 0: // consume until timeout
		tt := time.NewTimer(timeout)
		for {
			select {
			case b := <-ch:
				bs = append(bs, b)
			case <-tt.C:
				// close(tt.C)
				break L1
			}
		}
	default: // consume until close
		for b := range ch {
			bs = append(bs, b)
		}
	}

	e.e.EncodeStringBytesRaw(bs)
}

func (e *Encoder) kStructNoOmitempty(f *codecFnInfo, rv reflect.Value) {
	sfn := structFieldNode{v: rv, update: false}
	if f.ti.toArray || e.h.StructToArray { // toArray
		e.arrayStart(len(f.ti.sfiSrc))
		for _, si := range f.ti.sfiSrc {
			e.arrayElem()
			e.encodeValue(sfn.field(si), nil)
		}
		e.arrayEnd()
	} else {
		e.mapStart(len(f.ti.sfiSort))
		for _, si := range f.ti.sfiSort {
			e.mapElemKey()
			e.kStructFieldKey(f.ti.keyType, si.encNameAsciiAlphaNum, si.encName)
			e.mapElemValue()
			e.encodeValue(sfn.field(si), nil)
		}
		e.mapEnd()
	}
}

func (e *Encoder) kStructFieldKey(keyType valueType, encNameAsciiAlphaNum bool, encName string) {
	encStructFieldKey(encName, e.e, e.w(), keyType, encNameAsciiAlphaNum, e.js)
}

func (e *Encoder) kStruct(f *codecFnInfo, rv reflect.Value) {
	var newlen int
	toMap := !(f.ti.toArray || e.h.StructToArray)
	var mf map[string]interface{}
	if f.ti.isFlag(tiflagMissingFielder) {
		mf = rv2i(rv).(MissingFielder).CodecMissingFields()
		toMap = true
		newlen += len(mf)
	} else if f.ti.isFlag(tiflagMissingFielderPtr) {
		if rv.CanAddr() {
			mf = rv2i(rv.Addr()).(MissingFielder).CodecMissingFields()
		} else {
			// make a new addressable value of same one, and use it
			rv2 := reflect.New(rv.Type())
			rvSetDirect(rv2.Elem(), rv)
			mf = rv2i(rv2).(MissingFielder).CodecMissingFields()
		}
		toMap = true
		newlen += len(mf)
	}
	newlen += len(f.ti.sfiSrc)

	var fkvs = e.slist.get(newlen)

	recur := e.h.RecursiveEmptyCheck
	sfn := structFieldNode{v: rv, update: false}

	var kv sfiRv
	var j int
	if toMap {
		newlen = 0
		for _, si := range f.ti.sfiSort { // use sorted array
			kv.r = sfn.field(si)
			if si.omitEmpty() && isEmptyValue(kv.r, e.h.TypeInfos, recur, recur) {
				continue
			}
			kv.v = si // si.encName
			fkvs[newlen] = kv
			newlen++
		}
		var mflen int
		for k, v := range mf {
			if k == "" {
				delete(mf, k)
				continue
			}
			if f.ti.infoFieldOmitempty && isEmptyValue(rv4i(v), e.h.TypeInfos, recur, recur) {
				delete(mf, k)
				continue
			}
			mflen++
		}
		// encode it all
		e.mapStart(newlen + mflen)
		for j = 0; j < newlen; j++ {
			kv = fkvs[j]
			e.mapElemKey()
			e.kStructFieldKey(f.ti.keyType, kv.v.encNameAsciiAlphaNum, kv.v.encName)
			e.mapElemValue()
			e.encodeValue(kv.r, nil)
		}
		// now, add the others
		for k, v := range mf {
			e.mapElemKey()
			e.kStructFieldKey(f.ti.keyType, false, k)
			e.mapElemValue()
			e.encode(v)
		}
		e.mapEnd()
	} else {
		newlen = len(f.ti.sfiSrc)
		for i, si := range f.ti.sfiSrc { // use unsorted array (to match sequence in struct)
			kv.r = sfn.field(si)
			// use the zero value.
			// if a reference or struct, set to nil (so you do not output too much)
			if si.omitEmpty() && isEmptyValue(kv.r, e.h.TypeInfos, recur, recur) {
				switch kv.r.Kind() {
				case reflect.Struct, reflect.Interface, reflect.Ptr, reflect.Array, reflect.Map, reflect.Slice:
					kv.r = reflect.Value{} //encode as nil
				}
			}
			fkvs[i] = kv
		}
		// encode it all
		e.arrayStart(newlen)
		for j = 0; j < newlen; j++ {
			e.arrayElem()
			e.encodeValue(fkvs[j].r, nil)
		}
		e.arrayEnd()
	}

	// do not use defer. Instead, use explicit pool return at end of function.
	// defer has a cost we are trying to avoid.
	// If there is a panic and these slices are not returned, it is ok.
	// spool.end()
	e.slist.put(fkvs)
}

func (e *Encoder) kMap(f *codecFnInfo, rv reflect.Value) {
	if rvIsNil(rv) {
		e.e.EncodeNil()
		return
	}

	l := rv.Len()
	e.mapStart(l)
	if l == 0 {
		e.mapEnd()
		return
	}

	// determine the underlying key and val encFn's for the map.
	// This eliminates some work which is done for each loop iteration i.e.
	// rv.Type(), ref.ValueOf(rt).Pointer(), then check map/list for fn.
	//
	// However, if kind is reflect.Interface, do not pre-determine the
	// encoding type, because preEncodeValue may break it down to
	// a concrete type and kInterface will bomb.

	var keyFn, valFn *codecFn

	ktypeKind := f.ti.key.Kind()
	vtypeKind := f.ti.elem.Kind()

	rtval := f.ti.elem
	rtvalkind := vtypeKind
	for rtvalkind == reflect.Ptr {
		rtval = rtval.Elem()
		rtvalkind = rtval.Kind()
	}
	if rtvalkind != reflect.Interface {
		valFn = e.h.fn(rtval)
	}

	var rvv = mapAddressableRV(f.ti.elem, vtypeKind)

	if e.h.Canonical {
		e.kMapCanonical(f.ti.key, f.ti.elem, rv, rvv, valFn)
		e.mapEnd()
		return
	}

	rtkey := f.ti.key
	var keyTypeIsString = stringTypId == rt2id(rtkey) // rtkeyid
	if !keyTypeIsString {
		for rtkey.Kind() == reflect.Ptr {
			rtkey = rtkey.Elem()
		}
		if rtkey.Kind() != reflect.Interface {
			keyFn = e.h.fn(rtkey)
		}
	}

	var rvk = mapAddressableRV(f.ti.key, ktypeKind)

	var it mapIter
	mapRange(&it, rv, rvk, rvv, true)
	validKV := it.ValidKV()
	var vx reflect.Value
	for it.Next() {
		e.mapElemKey()
		if validKV {
			vx = it.Key()
		} else {
			vx = rvk
		}
		if keyTypeIsString {
			e.e.EncodeString(vx.String())
		} else {
			e.encodeValue(vx, keyFn)
		}
		e.mapElemValue()
		if validKV {
			vx = it.Value()
		} else {
			vx = rvv
		}
		e.encodeValue(vx, valFn)
	}
	it.Done()

	e.mapEnd()
}

func (e *Encoder) kMapCanonical(rtkey, rtval reflect.Type, rv, rvv reflect.Value, valFn *codecFn) {
	// we previously did out-of-band if an extension was registered.
	// This is not necessary, as the natural kind is sufficient for ordering.

	mks := rv.MapKeys()
	switch rtkey.Kind() {
	case reflect.Bool:
		mksv := make([]boolRv, len(mks))
		for i, k := range mks {
			v := &mksv[i]
			v.r = k
			v.v = k.Bool()
		}
		sort.Sort(boolRvSlice(mksv))
		for i := range mksv {
			e.mapElemKey()
			e.e.EncodeBool(mksv[i].v)
			e.mapElemValue()
			e.encodeValue(mapGet(rv, mksv[i].r, rvv), valFn)
		}
	case reflect.String:
		mksv := make([]stringRv, len(mks))
		for i, k := range mks {
			v := &mksv[i]
			v.r = k
			v.v = k.String()
		}
		sort.Sort(stringRvSlice(mksv))
		for i := range mksv {
			e.mapElemKey()
			e.e.EncodeString(mksv[i].v)
			e.mapElemValue()
			e.encodeValue(mapGet(rv, mksv[i].r, rvv), valFn)
		}
	case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint, reflect.Uintptr:
		mksv := make([]uint64Rv, len(mks))
		for i, k := range mks {
			v := &mksv[i]
			v.r = k
			v.v = k.Uint()
		}
		sort.Sort(uint64RvSlice(mksv))
		for i := range mksv {
			e.mapElemKey()
			e.e.EncodeUint(mksv[i].v)
			e.mapElemValue()
			e.encodeValue(mapGet(rv, mksv[i].r, rvv), valFn)
		}
	case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int:
		mksv := make([]int64Rv, len(mks))
		for i, k := range mks {
			v := &mksv[i]
			v.r = k
			v.v = k.Int()
		}
		sort.Sort(int64RvSlice(mksv))
		for i := range mksv {
			e.mapElemKey()
			e.e.EncodeInt(mksv[i].v)
			e.mapElemValue()
			e.encodeValue(mapGet(rv, mksv[i].r, rvv), valFn)
		}
	case reflect.Float32:
		mksv := make([]float64Rv, len(mks))
		for i, k := range mks {
			v := &mksv[i]
			v.r = k
			v.v = k.Float()
		}
		sort.Sort(float64RvSlice(mksv))
		for i := range mksv {
			e.mapElemKey()
			e.e.EncodeFloat32(float32(mksv[i].v))
			e.mapElemValue()
			e.encodeValue(mapGet(rv, mksv[i].r, rvv), valFn)
		}
	case reflect.Float64:
		mksv := make([]float64Rv, len(mks))
		for i, k := range mks {
			v := &mksv[i]
			v.r = k
			v.v = k.Float()
		}
		sort.Sort(float64RvSlice(mksv))
		for i := range mksv {
			e.mapElemKey()
			e.e.EncodeFloat64(mksv[i].v)
			e.mapElemValue()
			e.encodeValue(mapGet(rv, mksv[i].r, rvv), valFn)
		}
	case reflect.Struct:
		if rtkey == timeTyp {
			mksv := make([]timeRv, len(mks))
			for i, k := range mks {
				v := &mksv[i]
				v.r = k
				v.v = rv2i(k).(time.Time)
			}
			sort.Sort(timeRvSlice(mksv))
			for i := range mksv {
				e.mapElemKey()
				e.e.EncodeTime(mksv[i].v)
				e.mapElemValue()
				e.encodeValue(mapGet(rv, mksv[i].r, rvv), valFn)
			}
			break
		}
		fallthrough
	default:
		// out-of-band
		// first encode each key to a []byte first, then sort them, then record
		var mksv []byte = e.blist.get(len(mks) * 16)[:0]
		e2 := NewEncoderBytes(&mksv, e.hh)
		mksbv := make([]bytesRv, len(mks))
		for i, k := range mks {
			v := &mksbv[i]
			l := len(mksv)
			e2.MustEncode(k)
			v.r = k
			v.v = mksv[l:]
		}
		sort.Sort(bytesRvSlice(mksbv))
		for j := range mksbv {
			e.mapElemKey()
			e.encWr.writeb(mksbv[j].v) // e.asis(mksbv[j].v)
			e.mapElemValue()
			e.encodeValue(mapGet(rv, mksbv[j].r, rvv), valFn)
		}
		e.blist.put(mksv)
	}
}

// Encoder writes an object to an output stream in a supported format.
//
// Encoder is NOT safe for concurrent use i.e. a Encoder cannot be used
// concurrently in multiple goroutines.
//
// However, as Encoder could be allocation heavy to initialize, a Reset method is provided
// so its state can be reused to decode new input streams repeatedly.
// This is the idiomatic way to use.
type Encoder struct {
	panicHdl

	e encDriver

	h *BasicHandle

	// hopefully, reduce derefencing cost by laying the encWriter inside the Encoder
	encWr

	// ---- cpu cache line boundary
	hh Handle

	blist bytesFreelist
	err   error

	// ---- cpu cache line boundary

	// ---- writable fields during execution --- *try* to keep in sep cache line
	ci set // holds set of addresses found during an encoding (if CheckCircularRef=true)

	slist sfiRvFreelist

	b [(2 * 8)]byte // for encoding chan byte, (non-addressable) [N]byte, etc

	// ---- cpu cache line boundary?
}

// NewEncoder returns an Encoder for encoding into an io.Writer.
//
// For efficiency, Users are encouraged to configure WriterBufferSize on the handle
// OR pass in a memory buffered writer (eg bufio.Writer, bytes.Buffer).
func NewEncoder(w io.Writer, h Handle) *Encoder {
	e := h.newEncDriver().encoder()
	e.Reset(w)
	return e
}

// NewEncoderBytes returns an encoder for encoding directly and efficiently
// into a byte slice, using zero-copying to temporary slices.
//
// It will potentially replace the output byte slice pointed to.
// After encoding, the out parameter contains the encoded contents.
func NewEncoderBytes(out *[]byte, h Handle) *Encoder {
	e := h.newEncDriver().encoder()
	e.ResetBytes(out)
	return e
}

func (e *Encoder) init(h Handle) {
	e.err = errEncoderNotInitialized
	e.bytes = true
	e.hh = h
	e.h = basicHandle(h)
	e.be = e.hh.isBinary()
}

func (e *Encoder) w() *encWr {
	return &e.encWr
}

func (e *Encoder) resetCommon() {
	e.e.reset()
	if e.ci == nil {
		// e.ci = (set)(e.cidef[:0])
	} else {
		e.ci = e.ci[:0]
	}
	e.c = 0
	e.err = nil
}

// Reset resets the Encoder with a new output stream.
//
// This accommodates using the state of the Encoder,
// where it has "cached" information about sub-engines.
func (e *Encoder) Reset(w io.Writer) {
	if w == nil {
		return
	}
	e.bytes = false
	if e.wf == nil {
		e.wf = new(bufioEncWriter)
	}
	e.wf.reset(w, e.h.WriterBufferSize, &e.blist)
	e.resetCommon()
}

// ResetBytes resets the Encoder with a new destination output []byte.
func (e *Encoder) ResetBytes(out *[]byte) {
	if out == nil {
		return
	}
	var in []byte = *out
	if in == nil {
		in = make([]byte, defEncByteBufSize)
	}
	e.bytes = true
	e.wb.reset(in, out)
	e.resetCommon()
}

// Encode writes an object into a stream.
//
// Encoding can be configured via the struct tag for the fields.
// The key (in the struct tags) that we look at is configurable.
//
// By default, we look up the "codec" key in the struct field's tags,
// and fall bak to the "json" key if "codec" is absent.
// That key in struct field's tag value is the key name,
// followed by an optional comma and options.
//
// To set an option on all fields (e.g. omitempty on all fields), you
// can create a field called _struct, and set flags on it. The options
// which can be set on _struct are:
//    - omitempty: so all fields are omitted if empty
//    - toarray: so struct is encoded as an array
//    - int: so struct key names are encoded as signed integers (instead of strings)
//    - uint: so struct key names are encoded as unsigned integers (instead of strings)
//    - float: so struct key names are encoded as floats (instead of strings)
// More details on these below.
//
// Struct values "usually" encode as maps. Each exported struct field is encoded unless:
//    - the field's tag is "-", OR
//    - the field is empty (empty or the zero value) and its tag specifies the "omitempty" option.
//
// When encoding as a map, the first string in the tag (before the comma)
// is the map key string to use when encoding.
// ...
// This key is typically encoded as a string.
// However, there are instances where the encoded stream has mapping keys encoded as numbers.
// For example, some cbor streams have keys as integer codes in the stream, but they should map
// to fields in a structured object. Consequently, a struct is the natural representation in code.
// For these, configure the struct to encode/decode the keys as numbers (instead of string).
// This is done with the int,uint or float option on the _struct field (see above).
//
// However, struct values may encode as arrays. This happens when:
//    - StructToArray Encode option is set, OR
//    - the tag on the _struct field sets the "toarray" option
// Note that omitempty is ignored when encoding struct values as arrays,
// as an entry must be encoded for each field, to maintain its position.
//
// Values with types that implement MapBySlice are encoded as stream maps.
//
// The empty values (for omitempty option) are false, 0, any nil pointer
// or interface value, and any array, slice, map, or string of length zero.
//
// Anonymous fields are encoded inline except:
//    - the struct tag specifies a replacement name (first value)
//    - the field is of an interface type
//
// Examples:
//
//      // NOTE: 'json:' can be used as struct tag key, in place 'codec:' below.
//      type MyStruct struct {
//          _struct bool    `codec:",omitempty"`   //set omitempty for every field
//          Field1 string   `codec:"-"`            //skip this field
//          Field2 int      `codec:"myName"`       //Use key "myName" in encode stream
//          Field3 int32    `codec:",omitempty"`   //use key "Field3". Omit if empty.
//          Field4 bool     `codec:"f4,omitempty"` //use key "f4". Omit if empty.
//          io.Reader                              //use key "Reader".
//          MyStruct        `codec:"my1"           //use key "my1".
//          MyStruct                               //inline it
//          ...
//      }
//
//      type MyStruct struct {
//          _struct bool    `codec:",toarray"`     //encode struct as an array
//      }
//
//      type MyStruct struct {
//          _struct bool    `codec:",uint"`        //encode struct with "unsigned integer" keys
//          Field1 string   `codec:"1"`            //encode Field1 key using: EncodeInt(1)
//          Field2 string   `codec:"2"`            //encode Field2 key using: EncodeInt(2)
//      }
//
// The mode of encoding is based on the type of the value. When a value is seen:
//   - If a Selfer, call its CodecEncodeSelf method
//   - If an extension is registered for it, call that extension function
//   - If implements encoding.(Binary|Text|JSON)Marshaler, call Marshal(Binary|Text|JSON) method
//   - Else encode it based on its reflect.Kind
//
// Note that struct field names and keys in map[string]XXX will be treated as symbols.
// Some formats support symbols (e.g. binc) and will properly encode the string
// only once in the stream, and use a tag to refer to it thereafter.
func (e *Encoder) Encode(v interface{}) (err error) {
	// tried to use closure, as runtime optimizes defer with no params.
	// This seemed to be causing weird issues (like circular reference found, unexpected panic, etc).
	// Also, see https://github.com/golang/go/issues/14939#issuecomment-417836139
	// defer func() { e.deferred(&err) }() }
	// { x, y := e, &err; defer func() { x.deferred(y) }() }

	if e.err != nil {
		return e.err
	}
	if recoverPanicToErr {
		defer func() {
			// if error occurred during encoding, return that error;
			// else if error occurred on end'ing (i.e. during flush), return that error.
			err = e.w().endErr()
			x := recover()
			if x == nil {
				if e.err != err {
					e.err = err
				}
			} else {
				panicValToErr(e, x, &e.err)
				if e.err != err {
					err = e.err
				}
			}
		}()
	}

	// defer e.deferred(&err)
	e.mustEncode(v)
	return
}

// MustEncode is like Encode, but panics if unable to Encode.
// This provides insight to the code location that triggered the error.
func (e *Encoder) MustEncode(v interface{}) {
	if e.err != nil {
		panic(e.err)
	}
	e.mustEncode(v)
}

func (e *Encoder) mustEncode(v interface{}) {
	e.calls++
	e.encode(v)
	e.calls--
	if e.calls == 0 {
		e.e.atEndOfEncode()
		e.w().end()
	}
}

// Release releases shared (pooled) resources.
//
// It is important to call Release() when done with an Encoder, so those resources
// are released instantly for use by subsequently created Encoders.
//
// Deprecated: Release is a no-op as pooled resources are not used with an Encoder.
// This method is kept for compatibility reasons only.
func (e *Encoder) Release() {
}

func (e *Encoder) encode(iv interface{}) {
	// a switch with only concrete types can be optimized.
	// consequently, we deal with nil and interfaces outside the switch.

	if iv == nil {
		e.e.EncodeNil()
		return
	}

	rv, ok := isNil(iv)
	if ok {
		e.e.EncodeNil()
		return
	}

	var vself Selfer

	switch v := iv.(type) {
	// case nil:
	// case Selfer:
	case Raw:
		e.rawBytes(v)
	case reflect.Value:
		e.encodeValue(v, nil)

	case string:
		e.e.EncodeString(v)
	case bool:
		e.e.EncodeBool(v)
	case int:
		e.e.EncodeInt(int64(v))
	case int8:
		e.e.EncodeInt(int64(v))
	case int16:
		e.e.EncodeInt(int64(v))
	case int32:
		e.e.EncodeInt(int64(v))
	case int64:
		e.e.EncodeInt(v)
	case uint:
		e.e.EncodeUint(uint64(v))
	case uint8:
		e.e.EncodeUint(uint64(v))
	case uint16:
		e.e.EncodeUint(uint64(v))
	case uint32:
		e.e.EncodeUint(uint64(v))
	case uint64:
		e.e.EncodeUint(v)
	case uintptr:
		e.e.EncodeUint(uint64(v))
	case float32:
		e.e.EncodeFloat32(v)
	case float64:
		e.e.EncodeFloat64(v)
	case time.Time:
		e.e.EncodeTime(v)
	case []uint8:
		e.e.EncodeStringBytesRaw(v)
	case *Raw:
		e.rawBytes(*v)
	case *string:
		e.e.EncodeString(*v)
	case *bool:
		e.e.EncodeBool(*v)
	case *int:
		e.e.EncodeInt(int64(*v))
	case *int8:
		e.e.EncodeInt(int64(*v))
	case *int16:
		e.e.EncodeInt(int64(*v))
	case *int32:
		e.e.EncodeInt(int64(*v))
	case *int64:
		e.e.EncodeInt(*v)
	case *uint:
		e.e.EncodeUint(uint64(*v))
	case *uint8:
		e.e.EncodeUint(uint64(*v))
	case *uint16:
		e.e.EncodeUint(uint64(*v))
	case *uint32:
		e.e.EncodeUint(uint64(*v))
	case *uint64:
		e.e.EncodeUint(*v)
	case *uintptr:
		e.e.EncodeUint(uint64(*v))
	case *float32:
		e.e.EncodeFloat32(*v)
	case *float64:
		e.e.EncodeFloat64(*v)
	case *time.Time:
		e.e.EncodeTime(*v)
	case *[]uint8:
		if *v == nil {
			e.e.EncodeNil()
		} else {
			e.e.EncodeStringBytesRaw(*v)
		}
	default:
		if vself, ok = iv.(Selfer); ok {
			vself.CodecEncodeSelf(e)
		} else if !fastpathEncodeTypeSwitch(iv, e) {
			if !rv.IsValid() {
				rv = rv4i(iv)
			}
			e.encodeValue(rv, nil)
		}
	}
}

func (e *Encoder) encodeValue(rv reflect.Value, fn *codecFn) {
	// if a valid fn is passed, it MUST BE for the dereferenced type of rv

	// We considered using a uintptr (a pointer) retrievable via rv.UnsafeAddr.
	// However, it is possible for the same pointer to point to 2 different types e.g.
	//    type T struct { tHelper }
	//    Here, for var v T; &v and &v.tHelper are the same pointer.
	// Consequently, we need a tuple of type and pointer, which interface{} natively provides.
	var sptr interface{} // uintptr
	var rvp reflect.Value
	var rvpValid bool
TOP:
	switch rv.Kind() {
	case reflect.Ptr:
		if rvIsNil(rv) {
			e.e.EncodeNil()
			return
		}
		rvpValid = true
		rvp = rv
		rv = rv.Elem()
		if e.h.CheckCircularRef && rv.Kind() == reflect.Struct {
			sptr = rv2i(rvp) // rv.UnsafeAddr()
			break TOP
		}
		goto TOP
	case reflect.Interface:
		if rvIsNil(rv) {
			e.e.EncodeNil()
			return
		}
		rv = rv.Elem()
		goto TOP
	case reflect.Slice, reflect.Map:
		if rvIsNil(rv) {
			e.e.EncodeNil()
			return
		}
	case reflect.Invalid, reflect.Func:
		e.e.EncodeNil()
		return
	}

	if sptr != nil && (&e.ci).add(sptr) {
		e.errorf("circular reference found: # %p, %T", sptr, sptr)
	}

	var rt reflect.Type
	if fn == nil {
		rt = rv.Type()
		fn = e.h.fn(rt)
	}
	if fn.i.addrE {
		if rvpValid {
			fn.fe(e, &fn.i, rvp)
		} else if rv.CanAddr() {
			fn.fe(e, &fn.i, rv.Addr())
		} else {
			if rt == nil {
				rt = rv.Type()
			}
			rv2 := reflect.New(rt)
			rvSetDirect(rv2.Elem(), rv)
			fn.fe(e, &fn.i, rv2)
		}
	} else {
		fn.fe(e, &fn.i, rv)
	}
	if sptr != 0 {
		(&e.ci).remove(sptr)
	}
}

func (e *Encoder) marshalUtf8(bs []byte, fnerr error) {
	if fnerr != nil {
		panic(fnerr)
	}
	if bs == nil {
		e.e.EncodeNil()
	} else {
		e.e.EncodeString(stringView(bs))
		// e.e.EncodeStringEnc(cUTF8, stringView(bs))
	}
}

func (e *Encoder) marshalAsis(bs []byte, fnerr error) {
	if fnerr != nil {
		panic(fnerr)
	}
	if bs == nil {
		e.e.EncodeNil()
	} else {
		e.encWr.writeb(bs) // e.asis(bs)
	}
}

func (e *Encoder) marshalRaw(bs []byte, fnerr error) {
	if fnerr != nil {
		panic(fnerr)
	}
	if bs == nil {
		e.e.EncodeNil()
	} else {
		e.e.EncodeStringBytesRaw(bs)
	}
}

func (e *Encoder) rawBytes(vv Raw) {
	v := []byte(vv)
	if !e.h.Raw {
		e.errorf("Raw values cannot be encoded: %v", v)
	}
	e.encWr.writeb(v) // e.asis(v)
}

func (e *Encoder) wrapErr(v interface{}, err *error) {
	*err = encodeError{codecError{name: e.hh.Name(), err: v}}
}

// ---- container tracker methods
// Note: We update the .c after calling the callback.
// This way, the callback can know what the last status was.

func (e *Encoder) mapStart(length int) {
	e.e.WriteMapStart(length)
	e.c = containerMapStart
}

func (e *Encoder) mapElemKey() {
	if e.js {
		e.jsondriver().WriteMapElemKey()
	}
	e.c = containerMapKey
}

func (e *Encoder) mapElemValue() {
	if e.js {
		e.jsondriver().WriteMapElemValue()
	}
	e.c = containerMapValue
}

func (e *Encoder) mapEnd() {
	e.e.WriteMapEnd()
	// e.c = containerMapEnd
	e.c = 0
}

func (e *Encoder) arrayStart(length int) {
	e.e.WriteArrayStart(length)
	e.c = containerArrayStart
}

func (e *Encoder) arrayElem() {
	if e.js {
		e.jsondriver().WriteArrayElem()
	}
	e.c = containerArrayElem
}

func (e *Encoder) arrayEnd() {
	e.e.WriteArrayEnd()
	e.c = 0
	// e.c = containerArrayEnd
}

// ----------

func (e *Encoder) sideEncode(v interface{}, bs *[]byte) {
	rv := baseRV(v)
	e2 := NewEncoderBytes(bs, e.hh)
	e2.encodeValue(rv, e.h.fnNoExt(rv.Type()))
	e2.e.atEndOfEncode()
	e2.w().end()
}

func encStructFieldKey(encName string, ee encDriver, w *encWr,
	keyType valueType, encNameAsciiAlphaNum bool, js bool) {
	var m must
	// use if-else-if, not switch (which compiles to binary-search)
	// since keyType is typically valueTypeString, branch prediction is pretty good.
	if keyType == valueTypeString {
		if js && encNameAsciiAlphaNum { // keyType == valueTypeString
			w.writeqstr(encName)
		} else { // keyType == valueTypeString
			ee.EncodeString(encName)
		}
	} else if keyType == valueTypeInt {
		ee.EncodeInt(m.Int(strconv.ParseInt(encName, 10, 64)))
	} else if keyType == valueTypeUint {
		ee.EncodeUint(m.Uint(strconv.ParseUint(encName, 10, 64)))
	} else if keyType == valueTypeFloat {
		ee.EncodeFloat64(m.Float(strconv.ParseFloat(encName, 64)))
	}
}