arrays.go
12.5 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
package ndr
import (
"errors"
"fmt"
"reflect"
"strconv"
)
// intFromTag returns an int that is a value in a struct tag key/value pair
func intFromTag(tag reflect.StructTag, key string) (int, error) {
ndrTag := parseTags(tag)
d := 1
if n, ok := ndrTag.Map[key]; ok {
i, err := strconv.Atoi(n)
if err != nil {
return d, fmt.Errorf("invalid dimensions tag [%s]: %v", n, err)
}
d = i
}
return d, nil
}
// parseDimensions returns the a slice of the size of each dimension and type of the member at the deepest level.
func parseDimensions(v reflect.Value) (l []int, tb reflect.Type) {
if v.Kind() == reflect.Ptr {
v = v.Elem()
}
t := v.Type()
if t.Kind() == reflect.Ptr {
t = t.Elem()
}
if t.Kind() != reflect.Array && t.Kind() != reflect.Slice {
return
}
l = append(l, v.Len())
if t.Elem().Kind() == reflect.Array || t.Elem().Kind() == reflect.Slice {
// contains array or slice
var m []int
m, tb = parseDimensions(v.Index(0))
l = append(l, m...)
} else {
tb = t.Elem()
}
return
}
// sliceDimensions returns the count of dimensions a slice has.
func sliceDimensions(t reflect.Type) (d int, tb reflect.Type) {
if t.Kind() == reflect.Ptr {
t = t.Elem()
}
if t.Kind() == reflect.Slice {
d++
var n int
n, tb = sliceDimensions(t.Elem())
d += n
} else {
tb = t
}
return
}
// makeSubSlices is a deep recursive creation/initialisation of multi-dimensional slices.
// Takes the reflect.Value of the 1st dimension and a slice of the lengths of the sub dimensions
func makeSubSlices(v reflect.Value, l []int) {
ty := v.Type().Elem()
if ty.Kind() != reflect.Slice {
return
}
for i := 0; i < v.Len(); i++ {
s := reflect.MakeSlice(ty, l[0], l[0])
v.Index(i).Set(s)
// Are there more sub dimensions?
if len(l) > 1 {
makeSubSlices(v.Index(i), l[1:])
}
}
return
}
// multiDimensionalIndexPermutations returns all the permutations of the indexes of a multi-dimensional slice.
// The input is a slice of integers that indicates the max size/length of each dimension
func multiDimensionalIndexPermutations(l []int) (ps [][]int) {
z := make([]int, len(l), len(l)) // The zeros permutation
ps = append(ps, z)
// for each dimension, in reverse
for i := len(l) - 1; i >= 0; i-- {
ws := make([][]int, len(ps))
copy(ws, ps)
//create a permutation for each of the iterations of the current dimension
for j := 1; j <= l[i]-1; j++ {
// For each existing permutation
for _, p := range ws {
np := make([]int, len(p), len(p))
copy(np, p)
np[i] = j
ps = append(ps, np)
}
}
}
return
}
// precedingMax reads off the next conformant max value
func (dec *Decoder) precedingMax() uint32 {
m := dec.conformantMax[0]
dec.conformantMax = dec.conformantMax[1:]
return m
}
// fillFixedArray establishes if the fixed array is uni or multi dimensional and then fills it.
func (dec *Decoder) fillFixedArray(v reflect.Value, tag reflect.StructTag, def *[]deferedPtr) error {
l, t := parseDimensions(v)
if t.Kind() == reflect.String {
tag = reflect.StructTag(subStringArrayTag)
}
if len(l) < 1 {
return errors.New("could not establish dimensions of fixed array")
}
if len(l) == 1 {
err := dec.fillUniDimensionalFixedArray(v, tag, def)
if err != nil {
return fmt.Errorf("could not fill uni-dimensional fixed array: %v", err)
}
return nil
}
// Fixed array is multidimensional
ps := multiDimensionalIndexPermutations(l[:len(l)-1])
for _, p := range ps {
// Get current multi-dimensional index to fill
a := v
for _, i := range p {
a = a.Index(i)
}
// fill with the last dimension array
err := dec.fillUniDimensionalFixedArray(a, tag, def)
if err != nil {
return fmt.Errorf("could not fill dimension %v of multi-dimensional fixed array: %v", p, err)
}
}
return nil
}
// readUniDimensionalFixedArray reads an array (not slice) from the byte stream.
func (dec *Decoder) fillUniDimensionalFixedArray(v reflect.Value, tag reflect.StructTag, def *[]deferedPtr) error {
for i := 0; i < v.Len(); i++ {
err := dec.fill(v.Index(i), tag, def)
if err != nil {
return fmt.Errorf("could not fill index %d of fixed array: %v", i, err)
}
}
return nil
}
// fillConformantArray establishes if the conformant array is uni or multi dimensional and then fills the slice.
func (dec *Decoder) fillConformantArray(v reflect.Value, tag reflect.StructTag, def *[]deferedPtr) error {
d, _ := sliceDimensions(v.Type())
if d > 1 {
err := dec.fillMultiDimensionalConformantArray(v, d, tag, def)
if err != nil {
return err
}
} else {
err := dec.fillUniDimensionalConformantArray(v, tag, def)
if err != nil {
return err
}
}
return nil
}
// fillUniDimensionalConformantArray fills the uni-dimensional slice value.
func (dec *Decoder) fillUniDimensionalConformantArray(v reflect.Value, tag reflect.StructTag, def *[]deferedPtr) error {
m := dec.precedingMax()
n := int(m)
a := reflect.MakeSlice(v.Type(), n, n)
for i := 0; i < n; i++ {
err := dec.fill(a.Index(i), tag, def)
if err != nil {
return fmt.Errorf("could not fill index %d of uni-dimensional conformant array: %v", i, err)
}
}
v.Set(a)
return nil
}
// fillMultiDimensionalConformantArray fills the multi-dimensional slice value provided from conformant array data.
// The number of dimensions must be specified. This must be less than or equal to the dimensions in the slice for this
// method not to panic.
func (dec *Decoder) fillMultiDimensionalConformantArray(v reflect.Value, d int, tag reflect.StructTag, def *[]deferedPtr) error {
// Read the max size of each dimensions from the ndr stream
l := make([]int, d, d)
for i := range l {
l[i] = int(dec.precedingMax())
}
// Initialise size of slices
// Initialise the size of the 1st dimension
ty := v.Type()
v.Set(reflect.MakeSlice(ty, l[0], l[0]))
// Initialise the size of the other dimensions recursively
makeSubSlices(v, l[1:])
// Get all permutations of the indexes and go through each and fill
ps := multiDimensionalIndexPermutations(l)
for _, p := range ps {
// Get current multi-dimensional index to fill
a := v
for _, i := range p {
a = a.Index(i)
}
err := dec.fill(a, tag, def)
if err != nil {
return fmt.Errorf("could not fill index %v of slice: %v", p, err)
}
}
return nil
}
// fillVaryingArray establishes if the varying array is uni or multi dimensional and then fills the slice.
func (dec *Decoder) fillVaryingArray(v reflect.Value, tag reflect.StructTag, def *[]deferedPtr) error {
d, t := sliceDimensions(v.Type())
if d > 1 {
err := dec.fillMultiDimensionalVaryingArray(v, t, d, tag, def)
if err != nil {
return err
}
} else {
err := dec.fillUniDimensionalVaryingArray(v, tag, def)
if err != nil {
return err
}
}
return nil
}
// fillUniDimensionalVaryingArray fills the uni-dimensional slice value.
func (dec *Decoder) fillUniDimensionalVaryingArray(v reflect.Value, tag reflect.StructTag, def *[]deferedPtr) error {
o, err := dec.readUint32()
if err != nil {
return fmt.Errorf("could not read offset of uni-dimensional varying array: %v", err)
}
s, err := dec.readUint32()
if err != nil {
return fmt.Errorf("could not establish actual count of uni-dimensional varying array: %v", err)
}
t := v.Type()
// Total size of the array is the offset in the index being passed plus the actual count of elements being passed.
n := int(s + o)
a := reflect.MakeSlice(t, n, n)
// Populate the array starting at the offset specified
for i := int(o); i < n; i++ {
err := dec.fill(a.Index(i), tag, def)
if err != nil {
return fmt.Errorf("could not fill index %d of uni-dimensional varying array: %v", i, err)
}
}
v.Set(a)
return nil
}
// fillMultiDimensionalVaryingArray fills the multi-dimensional slice value provided from varying array data.
// The number of dimensions must be specified. This must be less than or equal to the dimensions in the slice for this
// method not to panic.
func (dec *Decoder) fillMultiDimensionalVaryingArray(v reflect.Value, t reflect.Type, d int, tag reflect.StructTag, def *[]deferedPtr) error {
// Read the offset and actual count of each dimensions from the ndr stream
o := make([]int, d, d)
l := make([]int, d, d)
for i := range l {
off, err := dec.readUint32()
if err != nil {
return fmt.Errorf("could not read offset of dimension %d: %v", i+1, err)
}
o[i] = int(off)
s, err := dec.readUint32()
if err != nil {
return fmt.Errorf("could not read size of dimension %d: %v", i+1, err)
}
l[i] = int(s) + int(off)
}
// Initialise size of slices
// Initialise the size of the 1st dimension
ty := v.Type()
v.Set(reflect.MakeSlice(ty, l[0], l[0]))
// Initialise the size of the other dimensions recursively
makeSubSlices(v, l[1:])
// Get all permutations of the indexes and go through each and fill
ps := multiDimensionalIndexPermutations(l)
for _, p := range ps {
// Get current multi-dimensional index to fill
a := v
var os bool // should this permutation be skipped due to the offset of any of the dimensions?
for i, j := range p {
if j < o[i] {
os = true
break
}
a = a.Index(j)
}
if os {
// This permutation should be skipped as it is less than the offset for one of the dimensions.
continue
}
err := dec.fill(a, tag, def)
if err != nil {
return fmt.Errorf("could not fill index %v of slice: %v", p, err)
}
}
return nil
}
// fillConformantVaryingArray establishes if the varying array is uni or multi dimensional and then fills the slice.
func (dec *Decoder) fillConformantVaryingArray(v reflect.Value, tag reflect.StructTag, def *[]deferedPtr) error {
d, t := sliceDimensions(v.Type())
if d > 1 {
err := dec.fillMultiDimensionalConformantVaryingArray(v, t, d, tag, def)
if err != nil {
return err
}
} else {
err := dec.fillUniDimensionalConformantVaryingArray(v, tag, def)
if err != nil {
return err
}
}
return nil
}
// fillUniDimensionalConformantVaryingArray fills the uni-dimensional slice value.
func (dec *Decoder) fillUniDimensionalConformantVaryingArray(v reflect.Value, tag reflect.StructTag, def *[]deferedPtr) error {
m := dec.precedingMax()
o, err := dec.readUint32()
if err != nil {
return fmt.Errorf("could not read offset of uni-dimensional conformant varying array: %v", err)
}
s, err := dec.readUint32()
if err != nil {
return fmt.Errorf("could not establish actual count of uni-dimensional conformant varying array: %v", err)
}
if m < o+s {
return errors.New("max count is less than the offset plus actual count")
}
t := v.Type()
n := int(s)
a := reflect.MakeSlice(t, n, n)
for i := int(o); i < n; i++ {
err := dec.fill(a.Index(i), tag, def)
if err != nil {
return fmt.Errorf("could not fill index %d of uni-dimensional conformant varying array: %v", i, err)
}
}
v.Set(a)
return nil
}
// fillMultiDimensionalConformantVaryingArray fills the multi-dimensional slice value provided from conformant varying array data.
// The number of dimensions must be specified. This must be less than or equal to the dimensions in the slice for this
// method not to panic.
func (dec *Decoder) fillMultiDimensionalConformantVaryingArray(v reflect.Value, t reflect.Type, d int, tag reflect.StructTag, def *[]deferedPtr) error {
// Read the offset and actual count of each dimensions from the ndr stream
m := make([]int, d, d)
for i := range m {
m[i] = int(dec.precedingMax())
}
o := make([]int, d, d)
l := make([]int, d, d)
for i := range l {
off, err := dec.readUint32()
if err != nil {
return fmt.Errorf("could not read offset of dimension %d: %v", i+1, err)
}
o[i] = int(off)
s, err := dec.readUint32()
if err != nil {
return fmt.Errorf("could not read actual count of dimension %d: %v", i+1, err)
}
if m[i] < int(s)+int(off) {
m[i] = int(s) + int(off)
}
l[i] = int(s)
}
// Initialise size of slices
// Initialise the size of the 1st dimension
ty := v.Type()
v.Set(reflect.MakeSlice(ty, m[0], m[0]))
// Initialise the size of the other dimensions recursively
makeSubSlices(v, m[1:])
// Get all permutations of the indexes and go through each and fill
ps := multiDimensionalIndexPermutations(m)
for _, p := range ps {
// Get current multi-dimensional index to fill
a := v
var os bool // should this permutation be skipped due to the offset of any of the dimensions or max is higher than the actual count being passed
for i, j := range p {
if j < o[i] || j >= l[i] {
os = true
break
}
a = a.Index(j)
}
if os {
// This permutation should be skipped as it is less than the offset for one of the dimensions.
continue
}
err := dec.fill(a, tag, def)
if err != nil {
return fmt.Errorf("could not fill index %v of slice: %v", p, err)
}
}
return nil
}