compress_fragment_two_pass.go
21.5 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
package brotli
import "encoding/binary"
/* Copyright 2015 Google Inc. All Rights Reserved.
Distributed under MIT license.
See file LICENSE for detail or copy at https://opensource.org/licenses/MIT
*/
/* Function for fast encoding of an input fragment, independently from the input
history. This function uses two-pass processing: in the first pass we save
the found backward matches and literal bytes into a buffer, and in the
second pass we emit them into the bit stream using prefix codes built based
on the actual command and literal byte histograms. */
const kCompressFragmentTwoPassBlockSize uint = 1 << 17
func hash1(p []byte, shift uint, length uint) uint32 {
var h uint64 = (binary.LittleEndian.Uint64(p) << ((8 - length) * 8)) * uint64(kHashMul32)
return uint32(h >> shift)
}
func hashBytesAtOffset(v uint64, offset uint, shift uint, length uint) uint32 {
assert(offset <= 8-length)
{
var h uint64 = ((v >> (8 * offset)) << ((8 - length) * 8)) * uint64(kHashMul32)
return uint32(h >> shift)
}
}
func isMatch1(p1 []byte, p2 []byte, length uint) bool {
var i uint
for i = 0; i < length && i < 6; i++ {
if p1[i] != p2[i] {
return false
}
}
return true
}
/* Builds a command and distance prefix code (each 64 symbols) into "depth" and
"bits" based on "histogram" and stores it into the bit stream. */
func buildAndStoreCommandPrefixCode(histogram []uint32, depth []byte, bits []uint16, storage_ix *uint, storage []byte) {
var tree [129]huffmanTree
var cmd_depth = [numCommandSymbols]byte{0}
/* Tree size for building a tree over 64 symbols is 2 * 64 + 1. */
var cmd_bits [64]uint16
createHuffmanTree(histogram, 64, 15, tree[:], depth)
createHuffmanTree(histogram[64:], 64, 14, tree[:], depth[64:])
/* We have to jump through a few hoops here in order to compute
the command bits because the symbols are in a different order than in
the full alphabet. This looks complicated, but having the symbols
in this order in the command bits saves a few branches in the Emit*
functions. */
copy(cmd_depth[:], depth[24:][:24])
copy(cmd_depth[24:][:], depth[:8])
copy(cmd_depth[32:][:], depth[48:][:8])
copy(cmd_depth[40:][:], depth[8:][:8])
copy(cmd_depth[48:][:], depth[56:][:8])
copy(cmd_depth[56:][:], depth[16:][:8])
convertBitDepthsToSymbols(cmd_depth[:], 64, cmd_bits[:])
copy(bits, cmd_bits[24:][:8])
copy(bits[8:], cmd_bits[40:][:8])
copy(bits[16:], cmd_bits[56:][:8])
copy(bits[24:], cmd_bits[:24])
copy(bits[48:], cmd_bits[32:][:8])
copy(bits[56:], cmd_bits[48:][:8])
convertBitDepthsToSymbols(depth[64:], 64, bits[64:])
{
/* Create the bit length array for the full command alphabet. */
var i uint
for i := 0; i < int(64); i++ {
cmd_depth[i] = 0
} /* only 64 first values were used */
copy(cmd_depth[:], depth[24:][:8])
copy(cmd_depth[64:][:], depth[32:][:8])
copy(cmd_depth[128:][:], depth[40:][:8])
copy(cmd_depth[192:][:], depth[48:][:8])
copy(cmd_depth[384:][:], depth[56:][:8])
for i = 0; i < 8; i++ {
cmd_depth[128+8*i] = depth[i]
cmd_depth[256+8*i] = depth[8+i]
cmd_depth[448+8*i] = depth[16+i]
}
storeHuffmanTree(cmd_depth[:], numCommandSymbols, tree[:], storage_ix, storage)
}
storeHuffmanTree(depth[64:], 64, tree[:], storage_ix, storage)
}
func emitInsertLen(insertlen uint32, commands *[]uint32) {
if insertlen < 6 {
(*commands)[0] = insertlen
} else if insertlen < 130 {
var tail uint32 = insertlen - 2
var nbits uint32 = log2FloorNonZero(uint(tail)) - 1
var prefix uint32 = tail >> nbits
var inscode uint32 = (nbits << 1) + prefix + 2
var extra uint32 = tail - (prefix << nbits)
(*commands)[0] = inscode | extra<<8
} else if insertlen < 2114 {
var tail uint32 = insertlen - 66
var nbits uint32 = log2FloorNonZero(uint(tail))
var code uint32 = nbits + 10
var extra uint32 = tail - (1 << nbits)
(*commands)[0] = code | extra<<8
} else if insertlen < 6210 {
var extra uint32 = insertlen - 2114
(*commands)[0] = 21 | extra<<8
} else if insertlen < 22594 {
var extra uint32 = insertlen - 6210
(*commands)[0] = 22 | extra<<8
} else {
var extra uint32 = insertlen - 22594
(*commands)[0] = 23 | extra<<8
}
*commands = (*commands)[1:]
}
func emitCopyLen(copylen uint, commands *[]uint32) {
if copylen < 10 {
(*commands)[0] = uint32(copylen + 38)
} else if copylen < 134 {
var tail uint = copylen - 6
var nbits uint = uint(log2FloorNonZero(tail) - 1)
var prefix uint = tail >> nbits
var code uint = (nbits << 1) + prefix + 44
var extra uint = tail - (prefix << nbits)
(*commands)[0] = uint32(code | extra<<8)
} else if copylen < 2118 {
var tail uint = copylen - 70
var nbits uint = uint(log2FloorNonZero(tail))
var code uint = nbits + 52
var extra uint = tail - (uint(1) << nbits)
(*commands)[0] = uint32(code | extra<<8)
} else {
var extra uint = copylen - 2118
(*commands)[0] = uint32(63 | extra<<8)
}
*commands = (*commands)[1:]
}
func emitCopyLenLastDistance(copylen uint, commands *[]uint32) {
if copylen < 12 {
(*commands)[0] = uint32(copylen + 20)
*commands = (*commands)[1:]
} else if copylen < 72 {
var tail uint = copylen - 8
var nbits uint = uint(log2FloorNonZero(tail) - 1)
var prefix uint = tail >> nbits
var code uint = (nbits << 1) + prefix + 28
var extra uint = tail - (prefix << nbits)
(*commands)[0] = uint32(code | extra<<8)
*commands = (*commands)[1:]
} else if copylen < 136 {
var tail uint = copylen - 8
var code uint = (tail >> 5) + 54
var extra uint = tail & 31
(*commands)[0] = uint32(code | extra<<8)
*commands = (*commands)[1:]
(*commands)[0] = 64
*commands = (*commands)[1:]
} else if copylen < 2120 {
var tail uint = copylen - 72
var nbits uint = uint(log2FloorNonZero(tail))
var code uint = nbits + 52
var extra uint = tail - (uint(1) << nbits)
(*commands)[0] = uint32(code | extra<<8)
*commands = (*commands)[1:]
(*commands)[0] = 64
*commands = (*commands)[1:]
} else {
var extra uint = copylen - 2120
(*commands)[0] = uint32(63 | extra<<8)
*commands = (*commands)[1:]
(*commands)[0] = 64
*commands = (*commands)[1:]
}
}
func emitDistance(distance uint32, commands *[]uint32) {
var d uint32 = distance + 3
var nbits uint32 = log2FloorNonZero(uint(d)) - 1
var prefix uint32 = (d >> nbits) & 1
var offset uint32 = (2 + prefix) << nbits
var distcode uint32 = 2*(nbits-1) + prefix + 80
var extra uint32 = d - offset
(*commands)[0] = distcode | extra<<8
*commands = (*commands)[1:]
}
/* REQUIRES: len <= 1 << 24. */
func storeMetaBlockHeader(len uint, is_uncompressed bool, storage_ix *uint, storage []byte) {
var nibbles uint = 6
/* ISLAST */
writeBits(1, 0, storage_ix, storage)
if len <= 1<<16 {
nibbles = 4
} else if len <= 1<<20 {
nibbles = 5
}
writeBits(2, uint64(nibbles)-4, storage_ix, storage)
writeBits(nibbles*4, uint64(len)-1, storage_ix, storage)
/* ISUNCOMPRESSED */
writeSingleBit(is_uncompressed, storage_ix, storage)
}
func createCommands(input []byte, block_size uint, input_size uint, base_ip_ptr []byte, table []int, table_bits uint, min_match uint, literals *[]byte, commands *[]uint32) {
var ip int = 0
var shift uint = 64 - table_bits
var ip_end int = int(block_size)
var base_ip int = -cap(base_ip_ptr) + cap(input)
var next_emit int = 0
var last_distance int = -1
/* "ip" is the input pointer. */
const kInputMarginBytes uint = windowGap
/* "next_emit" is a pointer to the first byte that is not covered by a
previous copy. Bytes between "next_emit" and the start of the next copy or
the end of the input will be emitted as literal bytes. */
if block_size >= kInputMarginBytes {
var len_limit uint = brotli_min_size_t(block_size-min_match, input_size-kInputMarginBytes)
var ip_limit int = int(len_limit)
/* For the last block, we need to keep a 16 bytes margin so that we can be
sure that all distances are at most window size - 16.
For all other blocks, we only need to keep a margin of 5 bytes so that
we don't go over the block size with a copy. */
var next_hash uint32
ip++
for next_hash = hash1(input[ip:], shift, min_match); ; {
var skip uint32 = 32
var next_ip int = ip
/* Step 1: Scan forward in the input looking for a 6-byte-long match.
If we get close to exhausting the input then goto emit_remainder.
Heuristic match skipping: If 32 bytes are scanned with no matches
found, start looking only at every other byte. If 32 more bytes are
scanned, look at every third byte, etc.. When a match is found,
immediately go back to looking at every byte. This is a small loss
(~5% performance, ~0.1% density) for compressible data due to more
bookkeeping, but for non-compressible data (such as JPEG) it's a huge
win since the compressor quickly "realizes" the data is incompressible
and doesn't bother looking for matches everywhere.
The "skip" variable keeps track of how many bytes there are since the
last match; dividing it by 32 (ie. right-shifting by five) gives the
number of bytes to move ahead for each iteration. */
var candidate int
assert(next_emit < ip)
trawl:
for {
var hash uint32 = next_hash
var bytes_between_hash_lookups uint32 = skip >> 5
skip++
ip = next_ip
assert(hash == hash1(input[ip:], shift, min_match))
next_ip = int(uint32(ip) + bytes_between_hash_lookups)
if next_ip > ip_limit {
goto emit_remainder
}
next_hash = hash1(input[next_ip:], shift, min_match)
candidate = ip - last_distance
if isMatch1(input[ip:], base_ip_ptr[candidate-base_ip:], min_match) {
if candidate < ip {
table[hash] = int(ip - base_ip)
break
}
}
candidate = base_ip + table[hash]
assert(candidate >= base_ip)
assert(candidate < ip)
table[hash] = int(ip - base_ip)
if isMatch1(input[ip:], base_ip_ptr[candidate-base_ip:], min_match) {
break
}
}
/* Check copy distance. If candidate is not feasible, continue search.
Checking is done outside of hot loop to reduce overhead. */
if ip-candidate > maxDistance_compress_fragment {
goto trawl
}
/* Step 2: Emit the found match together with the literal bytes from
"next_emit", and then see if we can find a next match immediately
afterwards. Repeat until we find no match for the input
without emitting some literal bytes. */
{
var base int = ip
/* > 0 */
var matched uint = min_match + findMatchLengthWithLimit(base_ip_ptr[uint(candidate-base_ip)+min_match:], input[uint(ip)+min_match:], uint(ip_end-ip)-min_match)
var distance int = int(base - candidate)
/* We have a 6-byte match at ip, and we need to emit bytes in
[next_emit, ip). */
var insert int = int(base - next_emit)
ip += int(matched)
emitInsertLen(uint32(insert), commands)
copy(*literals, input[next_emit:][:uint(insert)])
*literals = (*literals)[insert:]
if distance == last_distance {
(*commands)[0] = 64
*commands = (*commands)[1:]
} else {
emitDistance(uint32(distance), commands)
last_distance = distance
}
emitCopyLenLastDistance(matched, commands)
next_emit = ip
if ip >= ip_limit {
goto emit_remainder
}
{
var input_bytes uint64
var cur_hash uint32
/* We could immediately start working at ip now, but to improve
compression we first update "table" with the hashes of some
positions within the last copy. */
var prev_hash uint32
if min_match == 4 {
input_bytes = binary.LittleEndian.Uint64(input[ip-3:])
cur_hash = hashBytesAtOffset(input_bytes, 3, shift, min_match)
prev_hash = hashBytesAtOffset(input_bytes, 0, shift, min_match)
table[prev_hash] = int(ip - base_ip - 3)
prev_hash = hashBytesAtOffset(input_bytes, 1, shift, min_match)
table[prev_hash] = int(ip - base_ip - 2)
prev_hash = hashBytesAtOffset(input_bytes, 0, shift, min_match)
table[prev_hash] = int(ip - base_ip - 1)
} else {
input_bytes = binary.LittleEndian.Uint64(input[ip-5:])
prev_hash = hashBytesAtOffset(input_bytes, 0, shift, min_match)
table[prev_hash] = int(ip - base_ip - 5)
prev_hash = hashBytesAtOffset(input_bytes, 1, shift, min_match)
table[prev_hash] = int(ip - base_ip - 4)
prev_hash = hashBytesAtOffset(input_bytes, 2, shift, min_match)
table[prev_hash] = int(ip - base_ip - 3)
input_bytes = binary.LittleEndian.Uint64(input[ip-2:])
cur_hash = hashBytesAtOffset(input_bytes, 2, shift, min_match)
prev_hash = hashBytesAtOffset(input_bytes, 0, shift, min_match)
table[prev_hash] = int(ip - base_ip - 2)
prev_hash = hashBytesAtOffset(input_bytes, 1, shift, min_match)
table[prev_hash] = int(ip - base_ip - 1)
}
candidate = base_ip + table[cur_hash]
table[cur_hash] = int(ip - base_ip)
}
}
for ip-candidate <= maxDistance_compress_fragment && isMatch1(input[ip:], base_ip_ptr[candidate-base_ip:], min_match) {
var base int = ip
/* We have a 6-byte match at ip, and no need to emit any
literal bytes prior to ip. */
var matched uint = min_match + findMatchLengthWithLimit(base_ip_ptr[uint(candidate-base_ip)+min_match:], input[uint(ip)+min_match:], uint(ip_end-ip)-min_match)
ip += int(matched)
last_distance = int(base - candidate) /* > 0 */
emitCopyLen(matched, commands)
emitDistance(uint32(last_distance), commands)
next_emit = ip
if ip >= ip_limit {
goto emit_remainder
}
{
var input_bytes uint64
var cur_hash uint32
/* We could immediately start working at ip now, but to improve
compression we first update "table" with the hashes of some
positions within the last copy. */
var prev_hash uint32
if min_match == 4 {
input_bytes = binary.LittleEndian.Uint64(input[ip-3:])
cur_hash = hashBytesAtOffset(input_bytes, 3, shift, min_match)
prev_hash = hashBytesAtOffset(input_bytes, 0, shift, min_match)
table[prev_hash] = int(ip - base_ip - 3)
prev_hash = hashBytesAtOffset(input_bytes, 1, shift, min_match)
table[prev_hash] = int(ip - base_ip - 2)
prev_hash = hashBytesAtOffset(input_bytes, 2, shift, min_match)
table[prev_hash] = int(ip - base_ip - 1)
} else {
input_bytes = binary.LittleEndian.Uint64(input[ip-5:])
prev_hash = hashBytesAtOffset(input_bytes, 0, shift, min_match)
table[prev_hash] = int(ip - base_ip - 5)
prev_hash = hashBytesAtOffset(input_bytes, 1, shift, min_match)
table[prev_hash] = int(ip - base_ip - 4)
prev_hash = hashBytesAtOffset(input_bytes, 2, shift, min_match)
table[prev_hash] = int(ip - base_ip - 3)
input_bytes = binary.LittleEndian.Uint64(input[ip-2:])
cur_hash = hashBytesAtOffset(input_bytes, 2, shift, min_match)
prev_hash = hashBytesAtOffset(input_bytes, 0, shift, min_match)
table[prev_hash] = int(ip - base_ip - 2)
prev_hash = hashBytesAtOffset(input_bytes, 1, shift, min_match)
table[prev_hash] = int(ip - base_ip - 1)
}
candidate = base_ip + table[cur_hash]
table[cur_hash] = int(ip - base_ip)
}
}
ip++
next_hash = hash1(input[ip:], shift, min_match)
}
}
emit_remainder:
assert(next_emit <= ip_end)
/* Emit the remaining bytes as literals. */
if next_emit < ip_end {
var insert uint32 = uint32(ip_end - next_emit)
emitInsertLen(insert, commands)
copy(*literals, input[next_emit:][:insert])
*literals = (*literals)[insert:]
}
}
var storeCommands_kNumExtraBits = [128]uint32{
0,
0,
0,
0,
0,
0,
1,
1,
2,
2,
3,
3,
4,
4,
5,
5,
6,
7,
8,
9,
10,
12,
14,
24,
0,
0,
0,
0,
0,
0,
0,
0,
1,
1,
2,
2,
3,
3,
4,
4,
0,
0,
0,
0,
0,
0,
0,
0,
1,
1,
2,
2,
3,
3,
4,
4,
5,
5,
6,
7,
8,
9,
10,
24,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
1,
1,
2,
2,
3,
3,
4,
4,
5,
5,
6,
6,
7,
7,
8,
8,
9,
9,
10,
10,
11,
11,
12,
12,
13,
13,
14,
14,
15,
15,
16,
16,
17,
17,
18,
18,
19,
19,
20,
20,
21,
21,
22,
22,
23,
23,
24,
24,
}
var storeCommands_kInsertOffset = [24]uint32{
0,
1,
2,
3,
4,
5,
6,
8,
10,
14,
18,
26,
34,
50,
66,
98,
130,
194,
322,
578,
1090,
2114,
6210,
22594,
}
func storeCommands(literals []byte, num_literals uint, commands []uint32, num_commands uint, storage_ix *uint, storage []byte) {
var lit_depths [256]byte
var lit_bits [256]uint16
var lit_histo = [256]uint32{0}
var cmd_depths = [128]byte{0}
var cmd_bits = [128]uint16{0}
var cmd_histo = [128]uint32{0}
var i uint
for i = 0; i < num_literals; i++ {
lit_histo[literals[i]]++
}
buildAndStoreHuffmanTreeFast(lit_histo[:], num_literals, /* max_bits = */
8, lit_depths[:], lit_bits[:], storage_ix, storage)
for i = 0; i < num_commands; i++ {
var code uint32 = commands[i] & 0xFF
assert(code < 128)
cmd_histo[code]++
}
cmd_histo[1] += 1
cmd_histo[2] += 1
cmd_histo[64] += 1
cmd_histo[84] += 1
buildAndStoreCommandPrefixCode(cmd_histo[:], cmd_depths[:], cmd_bits[:], storage_ix, storage)
for i = 0; i < num_commands; i++ {
var cmd uint32 = commands[i]
var code uint32 = cmd & 0xFF
var extra uint32 = cmd >> 8
assert(code < 128)
writeBits(uint(cmd_depths[code]), uint64(cmd_bits[code]), storage_ix, storage)
writeBits(uint(storeCommands_kNumExtraBits[code]), uint64(extra), storage_ix, storage)
if code < 24 {
var insert uint32 = storeCommands_kInsertOffset[code] + extra
var j uint32
for j = 0; j < insert; j++ {
var lit byte = literals[0]
writeBits(uint(lit_depths[lit]), uint64(lit_bits[lit]), storage_ix, storage)
literals = literals[1:]
}
}
}
}
/* Acceptable loss for uncompressible speedup is 2% */
const minRatio = 0.98
const sampleRate = 43
func shouldCompress(input []byte, input_size uint, num_literals uint) bool {
var corpus_size float64 = float64(input_size)
if float64(num_literals) < minRatio*corpus_size {
return true
} else {
var literal_histo = [256]uint32{0}
var max_total_bit_cost float64 = corpus_size * 8 * minRatio / sampleRate
var i uint
for i = 0; i < input_size; i += sampleRate {
literal_histo[input[i]]++
}
return bitsEntropy(literal_histo[:], 256) < max_total_bit_cost
}
}
func rewindBitPosition(new_storage_ix uint, storage_ix *uint, storage []byte) {
var bitpos uint = new_storage_ix & 7
var mask uint = (1 << bitpos) - 1
storage[new_storage_ix>>3] &= byte(mask)
*storage_ix = new_storage_ix
}
func emitUncompressedMetaBlock(input []byte, input_size uint, storage_ix *uint, storage []byte) {
storeMetaBlockHeader(input_size, true, storage_ix, storage)
*storage_ix = (*storage_ix + 7) &^ 7
copy(storage[*storage_ix>>3:], input[:input_size])
*storage_ix += input_size << 3
storage[*storage_ix>>3] = 0
}
func compressFragmentTwoPassImpl(input []byte, input_size uint, is_last bool, command_buf []uint32, literal_buf []byte, table []int, table_bits uint, min_match uint, storage_ix *uint, storage []byte) {
/* Save the start of the first block for position and distance computations.
*/
var base_ip []byte = input
for input_size > 0 {
var block_size uint = brotli_min_size_t(input_size, kCompressFragmentTwoPassBlockSize)
var commands []uint32 = command_buf
var literals []byte = literal_buf
var num_literals uint
createCommands(input, block_size, input_size, base_ip, table, table_bits, min_match, &literals, &commands)
num_literals = uint(-cap(literals) + cap(literal_buf))
if shouldCompress(input, block_size, num_literals) {
var num_commands uint = uint(-cap(commands) + cap(command_buf))
storeMetaBlockHeader(block_size, false, storage_ix, storage)
/* No block splits, no contexts. */
writeBits(13, 0, storage_ix, storage)
storeCommands(literal_buf, num_literals, command_buf, num_commands, storage_ix, storage)
} else {
/* Since we did not find many backward references and the entropy of
the data is close to 8 bits, we can simply emit an uncompressed block.
This makes compression speed of uncompressible data about 3x faster. */
emitUncompressedMetaBlock(input, block_size, storage_ix, storage)
}
input = input[block_size:]
input_size -= block_size
}
}
/* Compresses "input" string to the "*storage" buffer as one or more complete
meta-blocks, and updates the "*storage_ix" bit position.
If "is_last" is 1, emits an additional empty last meta-block.
REQUIRES: "input_size" is greater than zero, or "is_last" is 1.
REQUIRES: "input_size" is less or equal to maximal metablock size (1 << 24).
REQUIRES: "command_buf" and "literal_buf" point to at least
kCompressFragmentTwoPassBlockSize long arrays.
REQUIRES: All elements in "table[0..table_size-1]" are initialized to zero.
REQUIRES: "table_size" is a power of two
OUTPUT: maximal copy distance <= |input_size|
OUTPUT: maximal copy distance <= BROTLI_MAX_BACKWARD_LIMIT(18) */
func compressFragmentTwoPass(input []byte, input_size uint, is_last bool, command_buf []uint32, literal_buf []byte, table []int, table_size uint, storage_ix *uint, storage []byte) {
var initial_storage_ix uint = *storage_ix
var table_bits uint = uint(log2FloorNonZero(table_size))
var min_match uint
if table_bits <= 15 {
min_match = 4
} else {
min_match = 6
}
compressFragmentTwoPassImpl(input, input_size, is_last, command_buf, literal_buf, table, table_bits, min_match, storage_ix, storage)
/* If output is larger than single uncompressed block, rewrite it. */
if *storage_ix-initial_storage_ix > 31+(input_size<<3) {
rewindBitPosition(initial_storage_ix, storage_ix, storage)
emitUncompressedMetaBlock(input, input_size, storage_ix, storage)
}
if is_last {
writeBits(1, 1, storage_ix, storage) /* islast */
writeBits(1, 1, storage_ix, storage) /* isempty */
*storage_ix = (*storage_ix + 7) &^ 7
}
}