decode.go 68.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632
package brotli

/* Copyright 2013 Google Inc. All Rights Reserved.

   Distributed under MIT license.
   See file LICENSE for detail or copy at https://opensource.org/licenses/MIT
*/

const (
	decoderResultError           = 0
	decoderResultSuccess         = 1
	decoderResultNeedsMoreInput  = 2
	decoderResultNeedsMoreOutput = 3
)

/**
 * Error code for detailed logging / production debugging.
 *
 * See ::BrotliDecoderGetErrorCode and ::BROTLI_LAST_ERROR_CODE.
 */
const (
	decoderNoError                          = 0
	decoderSuccess                          = 1
	decoderNeedsMoreInput                   = 2
	decoderNeedsMoreOutput                  = 3
	decoderErrorFormatExuberantNibble       = -1
	decoderErrorFormatReserved              = -2
	decoderErrorFormatExuberantMetaNibble   = -3
	decoderErrorFormatSimpleHuffmanAlphabet = -4
	decoderErrorFormatSimpleHuffmanSame     = -5
	decoderErrorFormatClSpace               = -6
	decoderErrorFormatHuffmanSpace          = -7
	decoderErrorFormatContextMapRepeat      = -8
	decoderErrorFormatBlockLength1          = -9
	decoderErrorFormatBlockLength2          = -10
	decoderErrorFormatTransform             = -11
	decoderErrorFormatDictionary            = -12
	decoderErrorFormatWindowBits            = -13
	decoderErrorFormatPadding1              = -14
	decoderErrorFormatPadding2              = -15
	decoderErrorFormatDistance              = -16
	decoderErrorDictionaryNotSet            = -19
	decoderErrorInvalidArguments            = -20
	decoderErrorAllocContextModes           = -21
	decoderErrorAllocTreeGroups             = -22
	decoderErrorAllocContextMap             = -25
	decoderErrorAllocRingBuffer1            = -26
	decoderErrorAllocRingBuffer2            = -27
	decoderErrorAllocBlockTypeTrees         = -30
	decoderErrorUnreachable                 = -31
)

/**
 * The value of the last error code, negative integer.
 *
 * All other error code values are in the range from ::lastErrorCode
 * to @c -1. There are also 4 other possible non-error codes @c 0 .. @c 3 in
 * ::BrotliDecoderErrorCode enumeration.
 */
const lastErrorCode = decoderErrorUnreachable

/** Options to be used with ::BrotliDecoderSetParameter. */
const (
	decoderParamDisableRingBufferReallocation = 0
	decoderParamLargeWindow                   = 1
)

const huffmanTableBits = 8

const huffmanTableMask = 0xFF

/* We need the slack region for the following reasons:
   - doing up to two 16-byte copies for fast backward copying
   - inserting transformed dictionary word (5 prefix + 24 base + 8 suffix) */
const kRingBufferWriteAheadSlack uint32 = 42

var kCodeLengthCodeOrder = [codeLengthCodes]byte{1, 2, 3, 4, 0, 5, 17, 6, 16, 7, 8, 9, 10, 11, 12, 13, 14, 15}

/* Static prefix code for the complex code length code lengths. */
var kCodeLengthPrefixLength = [16]byte{2, 2, 2, 3, 2, 2, 2, 4, 2, 2, 2, 3, 2, 2, 2, 4}

var kCodeLengthPrefixValue = [16]byte{0, 4, 3, 2, 0, 4, 3, 1, 0, 4, 3, 2, 0, 4, 3, 5}

func decoderSetParameter(state *Reader, p int, value uint32) bool {
	if state.state != stateUninited {
		return false
	}
	switch p {
	case decoderParamDisableRingBufferReallocation:
		if !(value == 0) {
			state.canny_ringbuffer_allocation = 0
		} else {
			state.canny_ringbuffer_allocation = 1
		}
		return true

	case decoderParamLargeWindow:
		state.large_window = (!(value == 0))
		return true

	default:
		return false
	}
}

/* Saves error code and converts it to BrotliDecoderResult. */
func saveErrorCode(s *Reader, e int) int {
	s.error_code = int(e)
	switch e {
	case decoderSuccess:
		return decoderResultSuccess

	case decoderNeedsMoreInput:
		return decoderResultNeedsMoreInput

	case decoderNeedsMoreOutput:
		return decoderResultNeedsMoreOutput

	default:
		return decoderResultError
	}
}

/* Decodes WBITS by reading 1 - 7 bits, or 0x11 for "Large Window Brotli".
   Precondition: bit-reader accumulator has at least 8 bits. */
func decodeWindowBits(s *Reader, br *bitReader) int {
	var n uint32
	var large_window bool = s.large_window
	s.large_window = false
	takeBits(br, 1, &n)
	if n == 0 {
		s.window_bits = 16
		return decoderSuccess
	}

	takeBits(br, 3, &n)
	if n != 0 {
		s.window_bits = 17 + n
		return decoderSuccess
	}

	takeBits(br, 3, &n)
	if n == 1 {
		if large_window {
			takeBits(br, 1, &n)
			if n == 1 {
				return decoderErrorFormatWindowBits
			}

			s.large_window = true
			return decoderSuccess
		} else {
			return decoderErrorFormatWindowBits
		}
	}

	if n != 0 {
		s.window_bits = 8 + n
		return decoderSuccess
	}

	s.window_bits = 17
	return decoderSuccess
}

/* Decodes a number in the range [0..255], by reading 1 - 11 bits. */
func decodeVarLenUint8(s *Reader, br *bitReader, value *uint32) int {
	var bits uint32
	switch s.substate_decode_uint8 {
	case stateDecodeUint8None:
		if !safeReadBits(br, 1, &bits) {
			return decoderNeedsMoreInput
		}

		if bits == 0 {
			*value = 0
			return decoderSuccess
		}
		fallthrough

		/* Fall through. */
	case stateDecodeUint8Short:
		if !safeReadBits(br, 3, &bits) {
			s.substate_decode_uint8 = stateDecodeUint8Short
			return decoderNeedsMoreInput
		}

		if bits == 0 {
			*value = 1
			s.substate_decode_uint8 = stateDecodeUint8None
			return decoderSuccess
		}

		/* Use output value as a temporary storage. It MUST be persisted. */
		*value = bits
		fallthrough

		/* Fall through. */
	case stateDecodeUint8Long:
		if !safeReadBits(br, *value, &bits) {
			s.substate_decode_uint8 = stateDecodeUint8Long
			return decoderNeedsMoreInput
		}

		*value = (1 << *value) + bits
		s.substate_decode_uint8 = stateDecodeUint8None
		return decoderSuccess

	default:
		return decoderErrorUnreachable
	}
}

/* Decodes a metablock length and flags by reading 2 - 31 bits. */
func decodeMetaBlockLength(s *Reader, br *bitReader) int {
	var bits uint32
	var i int
	for {
		switch s.substate_metablock_header {
		case stateMetablockHeaderNone:
			if !safeReadBits(br, 1, &bits) {
				return decoderNeedsMoreInput
			}

			if bits != 0 {
				s.is_last_metablock = 1
			} else {
				s.is_last_metablock = 0
			}
			s.meta_block_remaining_len = 0
			s.is_uncompressed = 0
			s.is_metadata = 0
			if s.is_last_metablock == 0 {
				s.substate_metablock_header = stateMetablockHeaderNibbles
				break
			}

			s.substate_metablock_header = stateMetablockHeaderEmpty
			fallthrough

			/* Fall through. */
		case stateMetablockHeaderEmpty:
			if !safeReadBits(br, 1, &bits) {
				return decoderNeedsMoreInput
			}

			if bits != 0 {
				s.substate_metablock_header = stateMetablockHeaderNone
				return decoderSuccess
			}

			s.substate_metablock_header = stateMetablockHeaderNibbles
			fallthrough

			/* Fall through. */
		case stateMetablockHeaderNibbles:
			if !safeReadBits(br, 2, &bits) {
				return decoderNeedsMoreInput
			}

			s.size_nibbles = uint(byte(bits + 4))
			s.loop_counter = 0
			if bits == 3 {
				s.is_metadata = 1
				s.substate_metablock_header = stateMetablockHeaderReserved
				break
			}

			s.substate_metablock_header = stateMetablockHeaderSize
			fallthrough

			/* Fall through. */
		case stateMetablockHeaderSize:
			i = s.loop_counter

			for ; i < int(s.size_nibbles); i++ {
				if !safeReadBits(br, 4, &bits) {
					s.loop_counter = i
					return decoderNeedsMoreInput
				}

				if uint(i+1) == s.size_nibbles && s.size_nibbles > 4 && bits == 0 {
					return decoderErrorFormatExuberantNibble
				}

				s.meta_block_remaining_len |= int(bits << uint(i*4))
			}

			s.substate_metablock_header = stateMetablockHeaderUncompressed
			fallthrough

			/* Fall through. */
		case stateMetablockHeaderUncompressed:
			if s.is_last_metablock == 0 {
				if !safeReadBits(br, 1, &bits) {
					return decoderNeedsMoreInput
				}

				if bits != 0 {
					s.is_uncompressed = 1
				} else {
					s.is_uncompressed = 0
				}
			}

			s.meta_block_remaining_len++
			s.substate_metablock_header = stateMetablockHeaderNone
			return decoderSuccess

		case stateMetablockHeaderReserved:
			if !safeReadBits(br, 1, &bits) {
				return decoderNeedsMoreInput
			}

			if bits != 0 {
				return decoderErrorFormatReserved
			}

			s.substate_metablock_header = stateMetablockHeaderBytes
			fallthrough

			/* Fall through. */
		case stateMetablockHeaderBytes:
			if !safeReadBits(br, 2, &bits) {
				return decoderNeedsMoreInput
			}

			if bits == 0 {
				s.substate_metablock_header = stateMetablockHeaderNone
				return decoderSuccess
			}

			s.size_nibbles = uint(byte(bits))
			s.substate_metablock_header = stateMetablockHeaderMetadata
			fallthrough

			/* Fall through. */
		case stateMetablockHeaderMetadata:
			i = s.loop_counter

			for ; i < int(s.size_nibbles); i++ {
				if !safeReadBits(br, 8, &bits) {
					s.loop_counter = i
					return decoderNeedsMoreInput
				}

				if uint(i+1) == s.size_nibbles && s.size_nibbles > 1 && bits == 0 {
					return decoderErrorFormatExuberantMetaNibble
				}

				s.meta_block_remaining_len |= int(bits << uint(i*8))
			}

			s.meta_block_remaining_len++
			s.substate_metablock_header = stateMetablockHeaderNone
			return decoderSuccess

		default:
			return decoderErrorUnreachable
		}
	}
}

/* Decodes the Huffman code.
   This method doesn't read data from the bit reader, BUT drops the amount of
   bits that correspond to the decoded symbol.
   bits MUST contain at least 15 (BROTLI_HUFFMAN_MAX_CODE_LENGTH) valid bits. */
func decodeSymbol(bits uint32, table []huffmanCode, br *bitReader) uint32 {
	table = table[bits&huffmanTableMask:]
	if table[0].bits > huffmanTableBits {
		var nbits uint32 = uint32(table[0].bits) - huffmanTableBits
		dropBits(br, huffmanTableBits)
		table = table[uint32(table[0].value)+((bits>>huffmanTableBits)&bitMask(nbits)):]
	}

	dropBits(br, uint32(table[0].bits))
	return uint32(table[0].value)
}

/* Reads and decodes the next Huffman code from bit-stream.
   This method peeks 16 bits of input and drops 0 - 15 of them. */
func readSymbol(table []huffmanCode, br *bitReader) uint32 {
	return decodeSymbol(get16BitsUnmasked(br), table, br)
}

/* Same as DecodeSymbol, but it is known that there is less than 15 bits of
   input are currently available. */
func safeDecodeSymbol(table []huffmanCode, br *bitReader, result *uint32) bool {
	var val uint32
	var available_bits uint32 = getAvailableBits(br)
	if available_bits == 0 {
		if table[0].bits == 0 {
			*result = uint32(table[0].value)
			return true
		}

		return false /* No valid bits at all. */
	}

	val = uint32(getBitsUnmasked(br))
	table = table[val&huffmanTableMask:]
	if table[0].bits <= huffmanTableBits {
		if uint32(table[0].bits) <= available_bits {
			dropBits(br, uint32(table[0].bits))
			*result = uint32(table[0].value)
			return true
		} else {
			return false /* Not enough bits for the first level. */
		}
	}

	if available_bits <= huffmanTableBits {
		return false /* Not enough bits to move to the second level. */
	}

	/* Speculatively drop HUFFMAN_TABLE_BITS. */
	val = (val & bitMask(uint32(table[0].bits))) >> huffmanTableBits

	available_bits -= huffmanTableBits
	table = table[uint32(table[0].value)+val:]
	if available_bits < uint32(table[0].bits) {
		return false /* Not enough bits for the second level. */
	}

	dropBits(br, huffmanTableBits+uint32(table[0].bits))
	*result = uint32(table[0].value)
	return true
}

func safeReadSymbol(table []huffmanCode, br *bitReader, result *uint32) bool {
	var val uint32
	if safeGetBits(br, 15, &val) {
		*result = decodeSymbol(val, table, br)
		return true
	}

	return safeDecodeSymbol(table, br, result)
}

/* Makes a look-up in first level Huffman table. Peeks 8 bits. */
func preloadSymbol(safe int, table []huffmanCode, br *bitReader, bits *uint32, value *uint32) {
	if safe != 0 {
		return
	}

	table = table[getBits(br, huffmanTableBits):]
	*bits = uint32(table[0].bits)
	*value = uint32(table[0].value)
}

/* Decodes the next Huffman code using data prepared by PreloadSymbol.
   Reads 0 - 15 bits. Also peeks 8 following bits. */
func readPreloadedSymbol(table []huffmanCode, br *bitReader, bits *uint32, value *uint32) uint32 {
	var result uint32 = *value
	var ext []huffmanCode
	if *bits > huffmanTableBits {
		var val uint32 = get16BitsUnmasked(br)
		ext = table[val&huffmanTableMask:][*value:]
		var mask uint32 = bitMask((*bits - huffmanTableBits))
		dropBits(br, huffmanTableBits)
		ext = ext[(val>>huffmanTableBits)&mask:]
		dropBits(br, uint32(ext[0].bits))
		result = uint32(ext[0].value)
	} else {
		dropBits(br, *bits)
	}

	preloadSymbol(0, table, br, bits, value)
	return result
}

func log2Floor(x uint32) uint32 {
	var result uint32 = 0
	for x != 0 {
		x >>= 1
		result++
	}

	return result
}

/* Reads (s->symbol + 1) symbols.
   Totally 1..4 symbols are read, 1..11 bits each.
   The list of symbols MUST NOT contain duplicates. */
func readSimpleHuffmanSymbols(alphabet_size uint32, max_symbol uint32, s *Reader) int {
	var br *bitReader = &s.br
	var max_bits uint32 = log2Floor(alphabet_size - 1)
	var i uint32 = s.sub_loop_counter
	/* max_bits == 1..11; symbol == 0..3; 1..44 bits will be read. */

	var num_symbols uint32 = s.symbol
	for i <= num_symbols {
		var v uint32
		if !safeReadBits(br, max_bits, &v) {
			s.sub_loop_counter = i
			s.substate_huffman = stateHuffmanSimpleRead
			return decoderNeedsMoreInput
		}

		if v >= max_symbol {
			return decoderErrorFormatSimpleHuffmanAlphabet
		}

		s.symbols_lists_array[i] = uint16(v)
		i++
	}

	for i = 0; i < num_symbols; i++ {
		var k uint32 = i + 1
		for ; k <= num_symbols; k++ {
			if s.symbols_lists_array[i] == s.symbols_lists_array[k] {
				return decoderErrorFormatSimpleHuffmanSame
			}
		}
	}

	return decoderSuccess
}

/* Process single decoded symbol code length:
   A) reset the repeat variable
   B) remember code length (if it is not 0)
   C) extend corresponding index-chain
   D) reduce the Huffman space
   E) update the histogram */
func processSingleCodeLength(code_len uint32, symbol *uint32, repeat *uint32, space *uint32, prev_code_len *uint32, symbol_lists symbolList, code_length_histo []uint16, next_symbol []int) {
	*repeat = 0
	if code_len != 0 { /* code_len == 1..15 */
		symbolListPut(symbol_lists, next_symbol[code_len], uint16(*symbol))
		next_symbol[code_len] = int(*symbol)
		*prev_code_len = code_len
		*space -= 32768 >> code_len
		code_length_histo[code_len]++
	}

	(*symbol)++
}

/* Process repeated symbol code length.
    A) Check if it is the extension of previous repeat sequence; if the decoded
       value is not BROTLI_REPEAT_PREVIOUS_CODE_LENGTH, then it is a new
       symbol-skip
    B) Update repeat variable
    C) Check if operation is feasible (fits alphabet)
    D) For each symbol do the same operations as in ProcessSingleCodeLength

   PRECONDITION: code_len == BROTLI_REPEAT_PREVIOUS_CODE_LENGTH or
                 code_len == BROTLI_REPEAT_ZERO_CODE_LENGTH */
func processRepeatedCodeLength(code_len uint32, repeat_delta uint32, alphabet_size uint32, symbol *uint32, repeat *uint32, space *uint32, prev_code_len *uint32, repeat_code_len *uint32, symbol_lists symbolList, code_length_histo []uint16, next_symbol []int) {
	var old_repeat uint32 /* for BROTLI_REPEAT_ZERO_CODE_LENGTH */ /* for BROTLI_REPEAT_ZERO_CODE_LENGTH */
	var extra_bits uint32 = 3
	var new_len uint32 = 0
	if code_len == repeatPreviousCodeLength {
		new_len = *prev_code_len
		extra_bits = 2
	}

	if *repeat_code_len != new_len {
		*repeat = 0
		*repeat_code_len = new_len
	}

	old_repeat = *repeat
	if *repeat > 0 {
		*repeat -= 2
		*repeat <<= extra_bits
	}

	*repeat += repeat_delta + 3
	repeat_delta = *repeat - old_repeat
	if *symbol+repeat_delta > alphabet_size {
		*symbol = alphabet_size
		*space = 0xFFFFF
		return
	}

	if *repeat_code_len != 0 {
		var last uint = uint(*symbol + repeat_delta)
		var next int = next_symbol[*repeat_code_len]
		for {
			symbolListPut(symbol_lists, next, uint16(*symbol))
			next = int(*symbol)
			(*symbol)++
			if (*symbol) == uint32(last) {
				break
			}
		}

		next_symbol[*repeat_code_len] = next
		*space -= repeat_delta << (15 - *repeat_code_len)
		code_length_histo[*repeat_code_len] = uint16(uint32(code_length_histo[*repeat_code_len]) + repeat_delta)
	} else {
		*symbol += repeat_delta
	}
}

/* Reads and decodes symbol codelengths. */
func readSymbolCodeLengths(alphabet_size uint32, s *Reader) int {
	var br *bitReader = &s.br
	var symbol uint32 = s.symbol
	var repeat uint32 = s.repeat
	var space uint32 = s.space
	var prev_code_len uint32 = s.prev_code_len
	var repeat_code_len uint32 = s.repeat_code_len
	var symbol_lists symbolList = s.symbol_lists
	var code_length_histo []uint16 = s.code_length_histo[:]
	var next_symbol []int = s.next_symbol[:]
	if !warmupBitReader(br) {
		return decoderNeedsMoreInput
	}
	var p []huffmanCode
	for symbol < alphabet_size && space > 0 {
		p = s.table[:]
		var code_len uint32
		if !checkInputAmount(br, shortFillBitWindowRead) {
			s.symbol = symbol
			s.repeat = repeat
			s.prev_code_len = prev_code_len
			s.repeat_code_len = repeat_code_len
			s.space = space
			return decoderNeedsMoreInput
		}

		fillBitWindow16(br)
		p = p[getBitsUnmasked(br)&uint64(bitMask(huffmanMaxCodeLengthCodeLength)):]
		dropBits(br, uint32(p[0].bits)) /* Use 1..5 bits. */
		code_len = uint32(p[0].value)   /* code_len == 0..17 */
		if code_len < repeatPreviousCodeLength {
			processSingleCodeLength(code_len, &symbol, &repeat, &space, &prev_code_len, symbol_lists, code_length_histo, next_symbol) /* code_len == 16..17, extra_bits == 2..3 */
		} else {
			var extra_bits uint32
			if code_len == repeatPreviousCodeLength {
				extra_bits = 2
			} else {
				extra_bits = 3
			}
			var repeat_delta uint32 = uint32(getBitsUnmasked(br)) & bitMask(extra_bits)
			dropBits(br, extra_bits)
			processRepeatedCodeLength(code_len, repeat_delta, alphabet_size, &symbol, &repeat, &space, &prev_code_len, &repeat_code_len, symbol_lists, code_length_histo, next_symbol)
		}
	}

	s.space = space
	return decoderSuccess
}

func safeReadSymbolCodeLengths(alphabet_size uint32, s *Reader) int {
	var br *bitReader = &s.br
	var get_byte bool = false
	var p []huffmanCode
	for s.symbol < alphabet_size && s.space > 0 {
		p = s.table[:]
		var code_len uint32
		var available_bits uint32
		var bits uint32 = 0
		if get_byte && !pullByte(br) {
			return decoderNeedsMoreInput
		}
		get_byte = false
		available_bits = getAvailableBits(br)
		if available_bits != 0 {
			bits = uint32(getBitsUnmasked(br))
		}

		p = p[bits&bitMask(huffmanMaxCodeLengthCodeLength):]
		if uint32(p[0].bits) > available_bits {
			get_byte = true
			continue
		}

		code_len = uint32(p[0].value) /* code_len == 0..17 */
		if code_len < repeatPreviousCodeLength {
			dropBits(br, uint32(p[0].bits))
			processSingleCodeLength(code_len, &s.symbol, &s.repeat, &s.space, &s.prev_code_len, s.symbol_lists, s.code_length_histo[:], s.next_symbol[:]) /* code_len == 16..17, extra_bits == 2..3 */
		} else {
			var extra_bits uint32 = code_len - 14
			var repeat_delta uint32 = (bits >> p[0].bits) & bitMask(extra_bits)
			if available_bits < uint32(p[0].bits)+extra_bits {
				get_byte = true
				continue
			}

			dropBits(br, uint32(p[0].bits)+extra_bits)
			processRepeatedCodeLength(code_len, repeat_delta, alphabet_size, &s.symbol, &s.repeat, &s.space, &s.prev_code_len, &s.repeat_code_len, s.symbol_lists, s.code_length_histo[:], s.next_symbol[:])
		}
	}

	return decoderSuccess
}

/* Reads and decodes 15..18 codes using static prefix code.
   Each code is 2..4 bits long. In total 30..72 bits are used. */
func readCodeLengthCodeLengths(s *Reader) int {
	var br *bitReader = &s.br
	var num_codes uint32 = s.repeat
	var space uint32 = s.space
	var i uint32 = s.sub_loop_counter
	for ; i < codeLengthCodes; i++ {
		var code_len_idx byte = kCodeLengthCodeOrder[i]
		var ix uint32
		var v uint32
		if !safeGetBits(br, 4, &ix) {
			var available_bits uint32 = getAvailableBits(br)
			if available_bits != 0 {
				ix = uint32(getBitsUnmasked(br) & 0xF)
			} else {
				ix = 0
			}

			if uint32(kCodeLengthPrefixLength[ix]) > available_bits {
				s.sub_loop_counter = i
				s.repeat = num_codes
				s.space = space
				s.substate_huffman = stateHuffmanComplex
				return decoderNeedsMoreInput
			}
		}

		v = uint32(kCodeLengthPrefixValue[ix])
		dropBits(br, uint32(kCodeLengthPrefixLength[ix]))
		s.code_length_code_lengths[code_len_idx] = byte(v)
		if v != 0 {
			space = space - (32 >> v)
			num_codes++
			s.code_length_histo[v]++
			if space-1 >= 32 {
				/* space is 0 or wrapped around. */
				break
			}
		}
	}

	if num_codes != 1 && space != 0 {
		return decoderErrorFormatClSpace
	}

	return decoderSuccess
}

/* Decodes the Huffman tables.
   There are 2 scenarios:
    A) Huffman code contains only few symbols (1..4). Those symbols are read
       directly; their code lengths are defined by the number of symbols.
       For this scenario 4 - 49 bits will be read.

    B) 2-phase decoding:
    B.1) Small Huffman table is decoded; it is specified with code lengths
         encoded with predefined entropy code. 32 - 74 bits are used.
    B.2) Decoded table is used to decode code lengths of symbols in resulting
         Huffman table. In worst case 3520 bits are read. */
func readHuffmanCode(alphabet_size uint32, max_symbol uint32, table []huffmanCode, opt_table_size *uint32, s *Reader) int {
	var br *bitReader = &s.br

	/* Unnecessary masking, but might be good for safety. */
	alphabet_size &= 0x7FF

	/* State machine. */
	for {
		switch s.substate_huffman {
		case stateHuffmanNone:
			if !safeReadBits(br, 2, &s.sub_loop_counter) {
				return decoderNeedsMoreInput
			}

			/* The value is used as follows:
			   1 for simple code;
			   0 for no skipping, 2 skips 2 code lengths, 3 skips 3 code lengths */
			if s.sub_loop_counter != 1 {
				s.space = 32
				s.repeat = 0 /* num_codes */
				var i int
				for i = 0; i <= huffmanMaxCodeLengthCodeLength; i++ {
					s.code_length_histo[i] = 0
				}

				for i = 0; i < codeLengthCodes; i++ {
					s.code_length_code_lengths[i] = 0
				}

				s.substate_huffman = stateHuffmanComplex
				continue
			}
			fallthrough

			/* Read symbols, codes & code lengths directly. */
		case stateHuffmanSimpleSize:
			if !safeReadBits(br, 2, &s.symbol) { /* num_symbols */
				s.substate_huffman = stateHuffmanSimpleSize
				return decoderNeedsMoreInput
			}

			s.sub_loop_counter = 0
			fallthrough

		case stateHuffmanSimpleRead:
			{
				var result int = readSimpleHuffmanSymbols(alphabet_size, max_symbol, s)
				if result != decoderSuccess {
					return result
				}
			}
			fallthrough

		case stateHuffmanSimpleBuild:
			var table_size uint32
			if s.symbol == 3 {
				var bits uint32
				if !safeReadBits(br, 1, &bits) {
					s.substate_huffman = stateHuffmanSimpleBuild
					return decoderNeedsMoreInput
				}

				s.symbol += bits
			}

			table_size = buildSimpleHuffmanTable(table, huffmanTableBits, s.symbols_lists_array[:], s.symbol)
			if opt_table_size != nil {
				*opt_table_size = table_size
			}

			s.substate_huffman = stateHuffmanNone
			return decoderSuccess

			/* Decode Huffman-coded code lengths. */
		case stateHuffmanComplex:
			{
				var i uint32
				var result int = readCodeLengthCodeLengths(s)
				if result != decoderSuccess {
					return result
				}

				buildCodeLengthsHuffmanTable(s.table[:], s.code_length_code_lengths[:], s.code_length_histo[:])
				for i = 0; i < 16; i++ {
					s.code_length_histo[i] = 0
				}

				for i = 0; i <= huffmanMaxCodeLength; i++ {
					s.next_symbol[i] = int(i) - (huffmanMaxCodeLength + 1)
					symbolListPut(s.symbol_lists, s.next_symbol[i], 0xFFFF)
				}

				s.symbol = 0
				s.prev_code_len = initialRepeatedCodeLength
				s.repeat = 0
				s.repeat_code_len = 0
				s.space = 32768
				s.substate_huffman = stateHuffmanLengthSymbols
			}
			fallthrough

		case stateHuffmanLengthSymbols:
			var table_size uint32
			var result int = readSymbolCodeLengths(max_symbol, s)
			if result == decoderNeedsMoreInput {
				result = safeReadSymbolCodeLengths(max_symbol, s)
			}

			if result != decoderSuccess {
				return result
			}

			if s.space != 0 {
				return decoderErrorFormatHuffmanSpace
			}

			table_size = buildHuffmanTable(table, huffmanTableBits, s.symbol_lists, s.code_length_histo[:])
			if opt_table_size != nil {
				*opt_table_size = table_size
			}

			s.substate_huffman = stateHuffmanNone
			return decoderSuccess

		default:
			return decoderErrorUnreachable
		}
	}
}

/* Decodes a block length by reading 3..39 bits. */
func readBlockLength(table []huffmanCode, br *bitReader) uint32 {
	var code uint32
	var nbits uint32
	code = readSymbol(table, br)
	nbits = kBlockLengthPrefixCode[code].nbits /* nbits == 2..24 */
	return kBlockLengthPrefixCode[code].offset + readBits(br, nbits)
}

/* WARNING: if state is not BROTLI_STATE_READ_BLOCK_LENGTH_NONE, then
   reading can't be continued with ReadBlockLength. */
func safeReadBlockLength(s *Reader, result *uint32, table []huffmanCode, br *bitReader) bool {
	var index uint32
	if s.substate_read_block_length == stateReadBlockLengthNone {
		if !safeReadSymbol(table, br, &index) {
			return false
		}
	} else {
		index = s.block_length_index
	}
	{
		var bits uint32 /* nbits == 2..24 */
		var nbits uint32 = kBlockLengthPrefixCode[index].nbits
		if !safeReadBits(br, nbits, &bits) {
			s.block_length_index = index
			s.substate_read_block_length = stateReadBlockLengthSuffix
			return false
		}

		*result = kBlockLengthPrefixCode[index].offset + bits
		s.substate_read_block_length = stateReadBlockLengthNone
		return true
	}
}

/* Transform:
    1) initialize list L with values 0, 1,... 255
    2) For each input element X:
    2.1) let Y = L[X]
    2.2) remove X-th element from L
    2.3) prepend Y to L
    2.4) append Y to output

   In most cases max(Y) <= 7, so most of L remains intact.
   To reduce the cost of initialization, we reuse L, remember the upper bound
   of Y values, and reinitialize only first elements in L.

   Most of input values are 0 and 1. To reduce number of branches, we replace
   inner for loop with do-while. */
func inverseMoveToFrontTransform(v []byte, v_len uint32, state *Reader) {
	var mtf [256]byte
	var i int
	for i = 1; i < 256; i++ {
		mtf[i] = byte(i)
	}
	var mtf_1 byte

	/* Transform the input. */
	for i = 0; uint32(i) < v_len; i++ {
		var index int = int(v[i])
		var value byte = mtf[index]
		v[i] = value
		mtf_1 = value
		for index >= 1 {
			index--
			mtf[index+1] = mtf[index]
		}

		mtf[0] = mtf_1
	}
}

/* Decodes a series of Huffman table using ReadHuffmanCode function. */
func huffmanTreeGroupDecode(group *huffmanTreeGroup, s *Reader) int {
	if s.substate_tree_group != stateTreeGroupLoop {
		s.next = group.codes
		s.htree_index = 0
		s.substate_tree_group = stateTreeGroupLoop
	}

	for s.htree_index < int(group.num_htrees) {
		var table_size uint32
		var result int = readHuffmanCode(uint32(group.alphabet_size), uint32(group.max_symbol), s.next, &table_size, s)
		if result != decoderSuccess {
			return result
		}
		group.htrees[s.htree_index] = s.next
		s.next = s.next[table_size:]
		s.htree_index++
	}

	s.substate_tree_group = stateTreeGroupNone
	return decoderSuccess
}

/* Decodes a context map.
   Decoding is done in 4 phases:
    1) Read auxiliary information (6..16 bits) and allocate memory.
       In case of trivial context map, decoding is finished at this phase.
    2) Decode Huffman table using ReadHuffmanCode function.
       This table will be used for reading context map items.
    3) Read context map items; "0" values could be run-length encoded.
    4) Optionally, apply InverseMoveToFront transform to the resulting map. */
func decodeContextMap(context_map_size uint32, num_htrees *uint32, context_map_arg *[]byte, s *Reader) int {
	var br *bitReader = &s.br
	var result int = decoderSuccess

	switch int(s.substate_context_map) {
	case stateContextMapNone:
		result = decodeVarLenUint8(s, br, num_htrees)
		if result != decoderSuccess {
			return result
		}

		(*num_htrees)++
		s.context_index = 0
		*context_map_arg = make([]byte, uint(context_map_size))
		if *context_map_arg == nil {
			return decoderErrorAllocContextMap
		}

		if *num_htrees <= 1 {
			for i := 0; i < int(context_map_size); i++ {
				(*context_map_arg)[i] = 0
			}
			return decoderSuccess
		}

		s.substate_context_map = stateContextMapReadPrefix
		fallthrough
	/* Fall through. */
	case stateContextMapReadPrefix:
		{
			var bits uint32

			/* In next stage ReadHuffmanCode uses at least 4 bits, so it is safe
			   to peek 4 bits ahead. */
			if !safeGetBits(br, 5, &bits) {
				return decoderNeedsMoreInput
			}

			if bits&1 != 0 { /* Use RLE for zeros. */
				s.max_run_length_prefix = (bits >> 1) + 1
				dropBits(br, 5)
			} else {
				s.max_run_length_prefix = 0
				dropBits(br, 1)
			}

			s.substate_context_map = stateContextMapHuffman
		}
		fallthrough

		/* Fall through. */
	case stateContextMapHuffman:
		{
			var alphabet_size uint32 = *num_htrees + s.max_run_length_prefix
			result = readHuffmanCode(alphabet_size, alphabet_size, s.context_map_table[:], nil, s)
			if result != decoderSuccess {
				return result
			}
			s.code = 0xFFFF
			s.substate_context_map = stateContextMapDecode
		}
		fallthrough

		/* Fall through. */
	case stateContextMapDecode:
		{
			var context_index uint32 = s.context_index
			var max_run_length_prefix uint32 = s.max_run_length_prefix
			var context_map []byte = *context_map_arg
			var code uint32 = s.code
			var skip_preamble bool = (code != 0xFFFF)
			for context_index < context_map_size || skip_preamble {
				if !skip_preamble {
					if !safeReadSymbol(s.context_map_table[:], br, &code) {
						s.code = 0xFFFF
						s.context_index = context_index
						return decoderNeedsMoreInput
					}

					if code == 0 {
						context_map[context_index] = 0
						context_index++
						continue
					}

					if code > max_run_length_prefix {
						context_map[context_index] = byte(code - max_run_length_prefix)
						context_index++
						continue
					}
				} else {
					skip_preamble = false
				}

				/* RLE sub-stage. */
				{
					var reps uint32
					if !safeReadBits(br, code, &reps) {
						s.code = code
						s.context_index = context_index
						return decoderNeedsMoreInput
					}

					reps += 1 << code
					if context_index+reps > context_map_size {
						return decoderErrorFormatContextMapRepeat
					}

					for {
						context_map[context_index] = 0
						context_index++
						reps--
						if reps == 0 {
							break
						}
					}
				}
			}
		}
		fallthrough

	case stateContextMapTransform:
		var bits uint32
		if !safeReadBits(br, 1, &bits) {
			s.substate_context_map = stateContextMapTransform
			return decoderNeedsMoreInput
		}

		if bits != 0 {
			inverseMoveToFrontTransform(*context_map_arg, context_map_size, s)
		}

		s.substate_context_map = stateContextMapNone
		return decoderSuccess

	default:
		return decoderErrorUnreachable
	}
}

/* Decodes a command or literal and updates block type ring-buffer.
   Reads 3..54 bits. */
func decodeBlockTypeAndLength(safe int, s *Reader, tree_type int) bool {
	var max_block_type uint32 = s.num_block_types[tree_type]
	var type_tree []huffmanCode
	type_tree = s.block_type_trees[tree_type*huffmanMaxSize258:]
	var len_tree []huffmanCode
	len_tree = s.block_len_trees[tree_type*huffmanMaxSize26:]
	var br *bitReader = &s.br
	var ringbuffer []uint32 = s.block_type_rb[tree_type*2:]
	var block_type uint32
	if max_block_type <= 1 {
		return false
	}

	/* Read 0..15 + 3..39 bits. */
	if safe == 0 {
		block_type = readSymbol(type_tree, br)
		s.block_length[tree_type] = readBlockLength(len_tree, br)
	} else {
		var memento bitReaderState
		bitReaderSaveState(br, &memento)
		if !safeReadSymbol(type_tree, br, &block_type) {
			return false
		}
		if !safeReadBlockLength(s, &s.block_length[tree_type], len_tree, br) {
			s.substate_read_block_length = stateReadBlockLengthNone
			bitReaderRestoreState(br, &memento)
			return false
		}
	}

	if block_type == 1 {
		block_type = ringbuffer[1] + 1
	} else if block_type == 0 {
		block_type = ringbuffer[0]
	} else {
		block_type -= 2
	}

	if block_type >= max_block_type {
		block_type -= max_block_type
	}

	ringbuffer[0] = ringbuffer[1]
	ringbuffer[1] = block_type
	return true
}

func detectTrivialLiteralBlockTypes(s *Reader) {
	var i uint
	for i = 0; i < 8; i++ {
		s.trivial_literal_contexts[i] = 0
	}
	for i = 0; uint32(i) < s.num_block_types[0]; i++ {
		var offset uint = i << literalContextBits
		var error uint = 0
		var sample uint = uint(s.context_map[offset])
		var j uint
		for j = 0; j < 1<<literalContextBits; {
			var k int
			for k = 0; k < 4; k++ {
				error |= uint(s.context_map[offset+j]) ^ sample
				j++
			}
		}

		if error == 0 {
			s.trivial_literal_contexts[i>>5] |= 1 << (i & 31)
		}
	}
}

func prepareLiteralDecoding(s *Reader) {
	var context_mode byte
	var trivial uint
	var block_type uint32 = s.block_type_rb[1]
	var context_offset uint32 = block_type << literalContextBits
	s.context_map_slice = s.context_map[context_offset:]
	trivial = uint(s.trivial_literal_contexts[block_type>>5])
	s.trivial_literal_context = int((trivial >> (block_type & 31)) & 1)
	s.literal_htree = []huffmanCode(s.literal_hgroup.htrees[s.context_map_slice[0]])
	context_mode = s.context_modes[block_type] & 3
	s.context_lookup = getContextLUT(int(context_mode))
}

/* Decodes the block type and updates the state for literal context.
   Reads 3..54 bits. */
func decodeLiteralBlockSwitchInternal(safe int, s *Reader) bool {
	if !decodeBlockTypeAndLength(safe, s, 0) {
		return false
	}

	prepareLiteralDecoding(s)
	return true
}

func decodeLiteralBlockSwitch(s *Reader) {
	decodeLiteralBlockSwitchInternal(0, s)
}

func safeDecodeLiteralBlockSwitch(s *Reader) bool {
	return decodeLiteralBlockSwitchInternal(1, s)
}

/* Block switch for insert/copy length.
   Reads 3..54 bits. */
func decodeCommandBlockSwitchInternal(safe int, s *Reader) bool {
	if !decodeBlockTypeAndLength(safe, s, 1) {
		return false
	}

	s.htree_command = []huffmanCode(s.insert_copy_hgroup.htrees[s.block_type_rb[3]])
	return true
}

func decodeCommandBlockSwitch(s *Reader) {
	decodeCommandBlockSwitchInternal(0, s)
}

func safeDecodeCommandBlockSwitch(s *Reader) bool {
	return decodeCommandBlockSwitchInternal(1, s)
}

/* Block switch for distance codes.
   Reads 3..54 bits. */
func decodeDistanceBlockSwitchInternal(safe int, s *Reader) bool {
	if !decodeBlockTypeAndLength(safe, s, 2) {
		return false
	}

	s.dist_context_map_slice = s.dist_context_map[s.block_type_rb[5]<<distanceContextBits:]
	s.dist_htree_index = s.dist_context_map_slice[s.distance_context]
	return true
}

func decodeDistanceBlockSwitch(s *Reader) {
	decodeDistanceBlockSwitchInternal(0, s)
}

func safeDecodeDistanceBlockSwitch(s *Reader) bool {
	return decodeDistanceBlockSwitchInternal(1, s)
}

func unwrittenBytes(s *Reader, wrap bool) uint {
	var pos uint
	if wrap && s.pos > s.ringbuffer_size {
		pos = uint(s.ringbuffer_size)
	} else {
		pos = uint(s.pos)
	}
	var partial_pos_rb uint = (s.rb_roundtrips * uint(s.ringbuffer_size)) + pos
	return partial_pos_rb - s.partial_pos_out
}

/* Dumps output.
   Returns BROTLI_DECODER_NEEDS_MORE_OUTPUT only if there is more output to push
   and either ring-buffer is as big as window size, or |force| is true. */
func writeRingBuffer(s *Reader, available_out *uint, next_out *[]byte, total_out *uint, force bool) int {
	var start []byte
	start = s.ringbuffer[s.partial_pos_out&uint(s.ringbuffer_mask):]
	var to_write uint = unwrittenBytes(s, true)
	var num_written uint = *available_out
	if num_written > to_write {
		num_written = to_write
	}

	if s.meta_block_remaining_len < 0 {
		return decoderErrorFormatBlockLength1
	}

	if next_out != nil && *next_out == nil {
		*next_out = start
	} else {
		if next_out != nil {
			copy(*next_out, start[:num_written])
			*next_out = (*next_out)[num_written:]
		}
	}

	*available_out -= num_written
	s.partial_pos_out += num_written
	if total_out != nil {
		*total_out = s.partial_pos_out
	}

	if num_written < to_write {
		if s.ringbuffer_size == 1<<s.window_bits || force {
			return decoderNeedsMoreOutput
		} else {
			return decoderSuccess
		}
	}

	/* Wrap ring buffer only if it has reached its maximal size. */
	if s.ringbuffer_size == 1<<s.window_bits && s.pos >= s.ringbuffer_size {
		s.pos -= s.ringbuffer_size
		s.rb_roundtrips++
		if uint(s.pos) != 0 {
			s.should_wrap_ringbuffer = 1
		} else {
			s.should_wrap_ringbuffer = 0
		}
	}

	return decoderSuccess
}

func wrapRingBuffer(s *Reader) {
	if s.should_wrap_ringbuffer != 0 {
		copy(s.ringbuffer, s.ringbuffer_end[:uint(s.pos)])
		s.should_wrap_ringbuffer = 0
	}
}

/* Allocates ring-buffer.

   s->ringbuffer_size MUST be updated by BrotliCalculateRingBufferSize before
   this function is called.

   Last two bytes of ring-buffer are initialized to 0, so context calculation
   could be done uniformly for the first two and all other positions. */
func ensureRingBuffer(s *Reader) bool {
	var old_ringbuffer []byte = s.ringbuffer
	if s.ringbuffer_size == s.new_ringbuffer_size {
		return true
	}

	s.ringbuffer = make([]byte, uint(s.new_ringbuffer_size)+uint(kRingBufferWriteAheadSlack))
	if s.ringbuffer == nil {
		/* Restore previous value. */
		s.ringbuffer = old_ringbuffer

		return false
	}

	s.ringbuffer[s.new_ringbuffer_size-2] = 0
	s.ringbuffer[s.new_ringbuffer_size-1] = 0

	if !(old_ringbuffer == nil) {
		copy(s.ringbuffer, old_ringbuffer[:uint(s.pos)])

		old_ringbuffer = nil
	}

	s.ringbuffer_size = s.new_ringbuffer_size
	s.ringbuffer_mask = s.new_ringbuffer_size - 1
	s.ringbuffer_end = s.ringbuffer[s.ringbuffer_size:]

	return true
}

func copyUncompressedBlockToOutput(available_out *uint, next_out *[]byte, total_out *uint, s *Reader) int {
	/* TODO: avoid allocation for single uncompressed block. */
	if !ensureRingBuffer(s) {
		return decoderErrorAllocRingBuffer1
	}

	/* State machine */
	for {
		switch s.substate_uncompressed {
		case stateUncompressedNone:
			{
				var nbytes int = int(getRemainingBytes(&s.br))
				if nbytes > s.meta_block_remaining_len {
					nbytes = s.meta_block_remaining_len
				}

				if s.pos+nbytes > s.ringbuffer_size {
					nbytes = s.ringbuffer_size - s.pos
				}

				/* Copy remaining bytes from s->br.buf_ to ring-buffer. */
				copyBytes(s.ringbuffer[s.pos:], &s.br, uint(nbytes))

				s.pos += nbytes
				s.meta_block_remaining_len -= nbytes
				if s.pos < 1<<s.window_bits {
					if s.meta_block_remaining_len == 0 {
						return decoderSuccess
					}

					return decoderNeedsMoreInput
				}

				s.substate_uncompressed = stateUncompressedWrite
			}
			fallthrough

		case stateUncompressedWrite:
			{
				var result int
				result = writeRingBuffer(s, available_out, next_out, total_out, false)
				if result != decoderSuccess {
					return result
				}

				if s.ringbuffer_size == 1<<s.window_bits {
					s.max_distance = s.max_backward_distance
				}

				s.substate_uncompressed = stateUncompressedNone
				break
			}
		}
	}
}

/* Calculates the smallest feasible ring buffer.

   If we know the data size is small, do not allocate more ring buffer
   size than needed to reduce memory usage.

   When this method is called, metablock size and flags MUST be decoded. */
func calculateRingBufferSize(s *Reader) {
	var window_size int = 1 << s.window_bits
	var new_ringbuffer_size int = window_size
	var min_size int
	/* We need at least 2 bytes of ring buffer size to get the last two
	   bytes for context from there */
	if s.ringbuffer_size != 0 {
		min_size = s.ringbuffer_size
	} else {
		min_size = 1024
	}
	var output_size int

	/* If maximum is already reached, no further extension is retired. */
	if s.ringbuffer_size == window_size {
		return
	}

	/* Metadata blocks does not touch ring buffer. */
	if s.is_metadata != 0 {
		return
	}

	if s.ringbuffer == nil {
		output_size = 0
	} else {
		output_size = s.pos
	}

	output_size += s.meta_block_remaining_len
	if min_size < output_size {
		min_size = output_size
	}

	if !(s.canny_ringbuffer_allocation == 0) {
		/* Reduce ring buffer size to save memory when server is unscrupulous.
		   In worst case memory usage might be 1.5x bigger for a short period of
		   ring buffer reallocation. */
		for new_ringbuffer_size>>1 >= min_size {
			new_ringbuffer_size >>= 1
		}
	}

	s.new_ringbuffer_size = new_ringbuffer_size
}

/* Reads 1..256 2-bit context modes. */
func readContextModes(s *Reader) int {
	var br *bitReader = &s.br
	var i int = s.loop_counter

	for i < int(s.num_block_types[0]) {
		var bits uint32
		if !safeReadBits(br, 2, &bits) {
			s.loop_counter = i
			return decoderNeedsMoreInput
		}

		s.context_modes[i] = byte(bits)
		i++
	}

	return decoderSuccess
}

func takeDistanceFromRingBuffer(s *Reader) {
	if s.distance_code == 0 {
		s.dist_rb_idx--
		s.distance_code = s.dist_rb[s.dist_rb_idx&3]

		/* Compensate double distance-ring-buffer roll for dictionary items. */
		s.distance_context = 1
	} else {
		var distance_code int = s.distance_code << 1
		const kDistanceShortCodeIndexOffset uint32 = 0xAAAFFF1B
		const kDistanceShortCodeValueOffset uint32 = 0xFA5FA500
		var v int = (s.dist_rb_idx + int(kDistanceShortCodeIndexOffset>>uint(distance_code))) & 0x3
		/* kDistanceShortCodeIndexOffset has 2-bit values from LSB:
		   3, 2, 1, 0, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2 */

		/* kDistanceShortCodeValueOffset has 2-bit values from LSB:
		   -0, 0,-0, 0,-1, 1,-2, 2,-3, 3,-1, 1,-2, 2,-3, 3 */
		s.distance_code = s.dist_rb[v]

		v = int(kDistanceShortCodeValueOffset>>uint(distance_code)) & 0x3
		if distance_code&0x3 != 0 {
			s.distance_code += v
		} else {
			s.distance_code -= v
			if s.distance_code <= 0 {
				/* A huge distance will cause a () soon.
				   This is a little faster than failing here. */
				s.distance_code = 0x7FFFFFFF
			}
		}
	}
}

func safeReadBitsMaybeZero(br *bitReader, n_bits uint32, val *uint32) bool {
	if n_bits != 0 {
		return safeReadBits(br, n_bits, val)
	} else {
		*val = 0
		return true
	}
}

/* Precondition: s->distance_code < 0. */
func readDistanceInternal(safe int, s *Reader, br *bitReader) bool {
	var distval int
	var memento bitReaderState
	var distance_tree []huffmanCode = []huffmanCode(s.distance_hgroup.htrees[s.dist_htree_index])
	if safe == 0 {
		s.distance_code = int(readSymbol(distance_tree, br))
	} else {
		var code uint32
		bitReaderSaveState(br, &memento)
		if !safeReadSymbol(distance_tree, br, &code) {
			return false
		}

		s.distance_code = int(code)
	}

	/* Convert the distance code to the actual distance by possibly
	   looking up past distances from the s->ringbuffer. */
	s.distance_context = 0

	if s.distance_code&^0xF == 0 {
		takeDistanceFromRingBuffer(s)
		s.block_length[2]--
		return true
	}

	distval = s.distance_code - int(s.num_direct_distance_codes)
	if distval >= 0 {
		var nbits uint32
		var postfix int
		var offset int
		if safe == 0 && (s.distance_postfix_bits == 0) {
			nbits = (uint32(distval) >> 1) + 1
			offset = ((2 + (distval & 1)) << nbits) - 4
			s.distance_code = int(s.num_direct_distance_codes) + offset + int(readBits(br, nbits))
		} else {
			/* This branch also works well when s->distance_postfix_bits == 0. */
			var bits uint32
			postfix = distval & s.distance_postfix_mask
			distval >>= s.distance_postfix_bits
			nbits = (uint32(distval) >> 1) + 1
			if safe != 0 {
				if !safeReadBitsMaybeZero(br, nbits, &bits) {
					s.distance_code = -1 /* Restore precondition. */
					bitReaderRestoreState(br, &memento)
					return false
				}
			} else {
				bits = readBits(br, nbits)
			}

			offset = ((2 + (distval & 1)) << nbits) - 4
			s.distance_code = int(s.num_direct_distance_codes) + ((offset + int(bits)) << s.distance_postfix_bits) + postfix
		}
	}

	s.distance_code = s.distance_code - numDistanceShortCodes + 1
	s.block_length[2]--
	return true
}

func readDistance(s *Reader, br *bitReader) {
	readDistanceInternal(0, s, br)
}

func safeReadDistance(s *Reader, br *bitReader) bool {
	return readDistanceInternal(1, s, br)
}

func readCommandInternal(safe int, s *Reader, br *bitReader, insert_length *int) bool {
	var cmd_code uint32
	var insert_len_extra uint32 = 0
	var copy_length uint32
	var v cmdLutElement
	var memento bitReaderState
	if safe == 0 {
		cmd_code = readSymbol(s.htree_command, br)
	} else {
		bitReaderSaveState(br, &memento)
		if !safeReadSymbol(s.htree_command, br, &cmd_code) {
			return false
		}
	}

	v = kCmdLut[cmd_code]
	s.distance_code = int(v.distance_code)
	s.distance_context = int(v.context)
	s.dist_htree_index = s.dist_context_map_slice[s.distance_context]
	*insert_length = int(v.insert_len_offset)
	if safe == 0 {
		if v.insert_len_extra_bits != 0 {
			insert_len_extra = readBits(br, uint32(v.insert_len_extra_bits))
		}

		copy_length = readBits(br, uint32(v.copy_len_extra_bits))
	} else {
		if !safeReadBitsMaybeZero(br, uint32(v.insert_len_extra_bits), &insert_len_extra) || !safeReadBitsMaybeZero(br, uint32(v.copy_len_extra_bits), &copy_length) {
			bitReaderRestoreState(br, &memento)
			return false
		}
	}

	s.copy_length = int(copy_length) + int(v.copy_len_offset)
	s.block_length[1]--
	*insert_length += int(insert_len_extra)
	return true
}

func readCommand(s *Reader, br *bitReader, insert_length *int) {
	readCommandInternal(0, s, br, insert_length)
}

func safeReadCommand(s *Reader, br *bitReader, insert_length *int) bool {
	return readCommandInternal(1, s, br, insert_length)
}

func checkInputAmountMaybeSafe(safe int, br *bitReader, num uint) bool {
	if safe != 0 {
		return true
	}

	return checkInputAmount(br, num)
}

func processCommandsInternal(safe int, s *Reader) int {
	var pos int = s.pos
	var i int = s.loop_counter
	var result int = decoderSuccess
	var br *bitReader = &s.br
	var hc []huffmanCode

	if !checkInputAmountMaybeSafe(safe, br, 28) {
		result = decoderNeedsMoreInput
		goto saveStateAndReturn
	}

	if safe == 0 {
		warmupBitReader(br)
	}

	/* Jump into state machine. */
	if s.state == stateCommandBegin {
		goto CommandBegin
	} else if s.state == stateCommandInner {
		goto CommandInner
	} else if s.state == stateCommandPostDecodeLiterals {
		goto CommandPostDecodeLiterals
	} else if s.state == stateCommandPostWrapCopy {
		goto CommandPostWrapCopy
	} else {
		return decoderErrorUnreachable
	}

CommandBegin:
	if safe != 0 {
		s.state = stateCommandBegin
	}

	if !checkInputAmountMaybeSafe(safe, br, 28) { /* 156 bits + 7 bytes */
		s.state = stateCommandBegin
		result = decoderNeedsMoreInput
		goto saveStateAndReturn
	}

	if s.block_length[1] == 0 {
		if safe != 0 {
			if !safeDecodeCommandBlockSwitch(s) {
				result = decoderNeedsMoreInput
				goto saveStateAndReturn
			}
		} else {
			decodeCommandBlockSwitch(s)
		}

		goto CommandBegin
	}

	/* Read the insert/copy length in the command. */
	if safe != 0 {
		if !safeReadCommand(s, br, &i) {
			result = decoderNeedsMoreInput
			goto saveStateAndReturn
		}
	} else {
		readCommand(s, br, &i)
	}

	if i == 0 {
		goto CommandPostDecodeLiterals
	}

	s.meta_block_remaining_len -= i

CommandInner:
	if safe != 0 {
		s.state = stateCommandInner
	}

	/* Read the literals in the command. */
	if s.trivial_literal_context != 0 {
		var bits uint32
		var value uint32
		preloadSymbol(safe, s.literal_htree, br, &bits, &value)
		for {
			if !checkInputAmountMaybeSafe(safe, br, 28) { /* 162 bits + 7 bytes */
				s.state = stateCommandInner
				result = decoderNeedsMoreInput
				goto saveStateAndReturn
			}

			if s.block_length[0] == 0 {
				if safe != 0 {
					if !safeDecodeLiteralBlockSwitch(s) {
						result = decoderNeedsMoreInput
						goto saveStateAndReturn
					}
				} else {
					decodeLiteralBlockSwitch(s)
				}

				preloadSymbol(safe, s.literal_htree, br, &bits, &value)
				if s.trivial_literal_context == 0 {
					goto CommandInner
				}
			}

			if safe == 0 {
				s.ringbuffer[pos] = byte(readPreloadedSymbol(s.literal_htree, br, &bits, &value))
			} else {
				var literal uint32
				if !safeReadSymbol(s.literal_htree, br, &literal) {
					result = decoderNeedsMoreInput
					goto saveStateAndReturn
				}

				s.ringbuffer[pos] = byte(literal)
			}

			s.block_length[0]--
			pos++
			if pos == s.ringbuffer_size {
				s.state = stateCommandInnerWrite
				i--
				goto saveStateAndReturn
			}
			i--
			if i == 0 {
				break
			}
		}
	} else {
		var p1 byte = s.ringbuffer[(pos-1)&s.ringbuffer_mask]
		var p2 byte = s.ringbuffer[(pos-2)&s.ringbuffer_mask]
		for {
			var context byte
			if !checkInputAmountMaybeSafe(safe, br, 28) { /* 162 bits + 7 bytes */
				s.state = stateCommandInner
				result = decoderNeedsMoreInput
				goto saveStateAndReturn
			}

			if s.block_length[0] == 0 {
				if safe != 0 {
					if !safeDecodeLiteralBlockSwitch(s) {
						result = decoderNeedsMoreInput
						goto saveStateAndReturn
					}
				} else {
					decodeLiteralBlockSwitch(s)
				}

				if s.trivial_literal_context != 0 {
					goto CommandInner
				}
			}

			context = getContext(p1, p2, s.context_lookup)
			hc = []huffmanCode(s.literal_hgroup.htrees[s.context_map_slice[context]])
			p2 = p1
			if safe == 0 {
				p1 = byte(readSymbol(hc, br))
			} else {
				var literal uint32
				if !safeReadSymbol(hc, br, &literal) {
					result = decoderNeedsMoreInput
					goto saveStateAndReturn
				}

				p1 = byte(literal)
			}

			s.ringbuffer[pos] = p1
			s.block_length[0]--
			pos++
			if pos == s.ringbuffer_size {
				s.state = stateCommandInnerWrite
				i--
				goto saveStateAndReturn
			}
			i--
			if i == 0 {
				break
			}
		}
	}

	if s.meta_block_remaining_len <= 0 {
		s.state = stateMetablockDone
		goto saveStateAndReturn
	}

CommandPostDecodeLiterals:
	if safe != 0 {
		s.state = stateCommandPostDecodeLiterals
	}

	if s.distance_code >= 0 {
		/* Implicit distance case. */
		if s.distance_code != 0 {
			s.distance_context = 0
		} else {
			s.distance_context = 1
		}

		s.dist_rb_idx--
		s.distance_code = s.dist_rb[s.dist_rb_idx&3]
	} else {
		/* Read distance code in the command, unless it was implicitly zero. */
		if s.block_length[2] == 0 {
			if safe != 0 {
				if !safeDecodeDistanceBlockSwitch(s) {
					result = decoderNeedsMoreInput
					goto saveStateAndReturn
				}
			} else {
				decodeDistanceBlockSwitch(s)
			}
		}

		if safe != 0 {
			if !safeReadDistance(s, br) {
				result = decoderNeedsMoreInput
				goto saveStateAndReturn
			}
		} else {
			readDistance(s, br)
		}
	}

	if s.max_distance != s.max_backward_distance {
		if pos < s.max_backward_distance {
			s.max_distance = pos
		} else {
			s.max_distance = s.max_backward_distance
		}
	}

	i = s.copy_length

	/* Apply copy of LZ77 back-reference, or static dictionary reference if
	   the distance is larger than the max LZ77 distance */
	if s.distance_code > s.max_distance {
		/* The maximum allowed distance is BROTLI_MAX_ALLOWED_DISTANCE = 0x7FFFFFFC.
		   With this choice, no signed overflow can occur after decoding
		   a special distance code (e.g., after adding 3 to the last distance). */
		if s.distance_code > maxAllowedDistance {
			return decoderErrorFormatDistance
		}

		if i >= minDictionaryWordLength && i <= maxDictionaryWordLength {
			var address int = s.distance_code - s.max_distance - 1
			var words *dictionary = s.dictionary
			var trans *transforms = s.transforms
			var offset int = int(s.dictionary.offsets_by_length[i])
			var shift uint32 = uint32(s.dictionary.size_bits_by_length[i])
			var mask int = int(bitMask(shift))
			var word_idx int = address & mask
			var transform_idx int = address >> shift

			/* Compensate double distance-ring-buffer roll. */
			s.dist_rb_idx += s.distance_context

			offset += word_idx * i
			if words.data == nil {
				return decoderErrorDictionaryNotSet
			}

			if transform_idx < int(trans.num_transforms) {
				var word []byte
				word = words.data[offset:]
				var len int = i
				if transform_idx == int(trans.cutOffTransforms[0]) {
					copy(s.ringbuffer[pos:], word[:uint(len)])
				} else {
					len = transformDictionaryWord(s.ringbuffer[pos:], word, int(len), trans, transform_idx)
				}

				pos += int(len)
				s.meta_block_remaining_len -= int(len)
				if pos >= s.ringbuffer_size {
					s.state = stateCommandPostWrite1
					goto saveStateAndReturn
				}
			} else {
				return decoderErrorFormatTransform
			}
		} else {
			return decoderErrorFormatDictionary
		}
	} else {
		var src_start int = (pos - s.distance_code) & s.ringbuffer_mask
		var copy_dst []byte
		copy_dst = s.ringbuffer[pos:]
		var copy_src []byte
		copy_src = s.ringbuffer[src_start:]
		var dst_end int = pos + i
		var src_end int = src_start + i

		/* Update the recent distances cache. */
		s.dist_rb[s.dist_rb_idx&3] = s.distance_code

		s.dist_rb_idx++
		s.meta_block_remaining_len -= i

		/* There are 32+ bytes of slack in the ring-buffer allocation.
		   Also, we have 16 short codes, that make these 16 bytes irrelevant
		   in the ring-buffer. Let's copy over them as a first guess. */
		copy(copy_dst, copy_src[:16])

		if src_end > pos && dst_end > src_start {
			/* Regions intersect. */
			goto CommandPostWrapCopy
		}

		if dst_end >= s.ringbuffer_size || src_end >= s.ringbuffer_size {
			/* At least one region wraps. */
			goto CommandPostWrapCopy
		}

		pos += i
		if i > 16 {
			if i > 32 {
				copy(copy_dst[16:], copy_src[16:][:uint(i-16)])
			} else {
				/* This branch covers about 45% cases.
				   Fixed size short copy allows more compiler optimizations. */
				copy(copy_dst[16:], copy_src[16:][:16])
			}
		}
	}

	if s.meta_block_remaining_len <= 0 {
		/* Next metablock, if any. */
		s.state = stateMetablockDone

		goto saveStateAndReturn
	} else {
		goto CommandBegin
	}
CommandPostWrapCopy:
	{
		var wrap_guard int = s.ringbuffer_size - pos
		for {
			i--
			if i < 0 {
				break
			}
			s.ringbuffer[pos] = s.ringbuffer[(pos-s.distance_code)&s.ringbuffer_mask]
			pos++
			wrap_guard--
			if wrap_guard == 0 {
				s.state = stateCommandPostWrite2
				goto saveStateAndReturn
			}
		}
	}

	if s.meta_block_remaining_len <= 0 {
		/* Next metablock, if any. */
		s.state = stateMetablockDone

		goto saveStateAndReturn
	} else {
		goto CommandBegin
	}

saveStateAndReturn:
	s.pos = pos
	s.loop_counter = i
	return result
}

func processCommands(s *Reader) int {
	return processCommandsInternal(0, s)
}

func safeProcessCommands(s *Reader) int {
	return processCommandsInternal(1, s)
}

/* Returns the maximum number of distance symbols which can only represent
   distances not exceeding BROTLI_MAX_ALLOWED_DISTANCE. */

var maxDistanceSymbol_bound = [maxNpostfix + 1]uint32{0, 4, 12, 28}
var maxDistanceSymbol_diff = [maxNpostfix + 1]uint32{73, 126, 228, 424}

func maxDistanceSymbol(ndirect uint32, npostfix uint32) uint32 {
	var postfix uint32 = 1 << npostfix
	if ndirect < maxDistanceSymbol_bound[npostfix] {
		return ndirect + maxDistanceSymbol_diff[npostfix] + postfix
	} else if ndirect > maxDistanceSymbol_bound[npostfix]+postfix {
		return ndirect + maxDistanceSymbol_diff[npostfix]
	} else {
		return maxDistanceSymbol_bound[npostfix] + maxDistanceSymbol_diff[npostfix] + postfix
	}
}

/* Invariant: input stream is never overconsumed:
   - invalid input implies that the whole stream is invalid -> any amount of
     input could be read and discarded
   - when result is "needs more input", then at least one more byte is REQUIRED
     to complete decoding; all input data MUST be consumed by decoder, so
     client could swap the input buffer
   - when result is "needs more output" decoder MUST ensure that it doesn't
     hold more than 7 bits in bit reader; this saves client from swapping input
     buffer ahead of time
   - when result is "success" decoder MUST return all unused data back to input
     buffer; this is possible because the invariant is held on enter */
func decoderDecompressStream(s *Reader, available_in *uint, next_in *[]byte, available_out *uint, next_out *[]byte) int {
	var result int = decoderSuccess
	var br *bitReader = &s.br

	/* Do not try to process further in a case of unrecoverable error. */
	if int(s.error_code) < 0 {
		return decoderResultError
	}

	if *available_out != 0 && (next_out == nil || *next_out == nil) {
		return saveErrorCode(s, decoderErrorInvalidArguments)
	}

	if *available_out == 0 {
		next_out = nil
	}
	if s.buffer_length == 0 { /* Just connect bit reader to input stream. */
		br.input_len = *available_in
		br.input = *next_in
		br.byte_pos = 0
	} else {
		/* At least one byte of input is required. More than one byte of input may
		   be required to complete the transaction -> reading more data must be
		   done in a loop -> do it in a main loop. */
		result = decoderNeedsMoreInput

		br.input = s.buffer.u8[:]
		br.byte_pos = 0
	}

	/* State machine */
	for {
		if result != decoderSuccess {
			/* Error, needs more input/output. */
			if result == decoderNeedsMoreInput {
				if s.ringbuffer != nil { /* Pro-actively push output. */
					var intermediate_result int = writeRingBuffer(s, available_out, next_out, nil, true)

					/* WriteRingBuffer checks s->meta_block_remaining_len validity. */
					if int(intermediate_result) < 0 {
						result = intermediate_result
						break
					}
				}

				if s.buffer_length != 0 { /* Used with internal buffer. */
					if br.byte_pos == br.input_len {
						/* Successfully finished read transaction.
						   Accumulator contains less than 8 bits, because internal buffer
						   is expanded byte-by-byte until it is enough to complete read. */
						s.buffer_length = 0

						/* Switch to input stream and restart. */
						result = decoderSuccess

						br.input_len = *available_in
						br.input = *next_in
						br.byte_pos = 0
						continue
					} else if *available_in != 0 {
						/* Not enough data in buffer, but can take one more byte from
						   input stream. */
						result = decoderSuccess

						s.buffer.u8[s.buffer_length] = (*next_in)[0]
						s.buffer_length++
						br.input_len = uint(s.buffer_length)
						*next_in = (*next_in)[1:]
						(*available_in)--

						/* Retry with more data in buffer. */
						continue
					}

					/* Can't finish reading and no more input. */
					break
					/* Input stream doesn't contain enough input. */
				} else {
					/* Copy tail to internal buffer and return. */
					*next_in = br.input[br.byte_pos:]

					*available_in = br.input_len - br.byte_pos
					for *available_in != 0 {
						s.buffer.u8[s.buffer_length] = (*next_in)[0]
						s.buffer_length++
						*next_in = (*next_in)[1:]
						(*available_in)--
					}

					break
				}
			}

			/* Unreachable. */

			/* Fail or needs more output. */
			if s.buffer_length != 0 {
				/* Just consumed the buffered input and produced some output. Otherwise
				   it would result in "needs more input". Reset internal buffer. */
				s.buffer_length = 0
			} else {
				/* Using input stream in last iteration. When decoder switches to input
				   stream it has less than 8 bits in accumulator, so it is safe to
				   return unused accumulator bits there. */
				bitReaderUnload(br)

				*available_in = br.input_len - br.byte_pos
				*next_in = br.input[br.byte_pos:]
			}

			break
		}

		switch s.state {
		/* Prepare to the first read. */
		case stateUninited:
			if !warmupBitReader(br) {
				result = decoderNeedsMoreInput
				break
			}

			/* Decode window size. */
			result = decodeWindowBits(s, br) /* Reads 1..8 bits. */
			if result != decoderSuccess {
				break
			}

			if s.large_window {
				s.state = stateLargeWindowBits
				break
			}

			s.state = stateInitialize

		case stateLargeWindowBits:
			if !safeReadBits(br, 6, &s.window_bits) {
				result = decoderNeedsMoreInput
				break
			}

			if s.window_bits < largeMinWbits || s.window_bits > largeMaxWbits {
				result = decoderErrorFormatWindowBits
				break
			}

			s.state = stateInitialize
			fallthrough

			/* Maximum distance, see section 9.1. of the spec. */
		/* Fall through. */
		case stateInitialize:
			s.max_backward_distance = (1 << s.window_bits) - windowGap

			/* Allocate memory for both block_type_trees and block_len_trees. */
			s.block_type_trees = make([]huffmanCode, (3 * (huffmanMaxSize258 + huffmanMaxSize26)))

			if s.block_type_trees == nil {
				result = decoderErrorAllocBlockTypeTrees
				break
			}

			s.block_len_trees = s.block_type_trees[3*huffmanMaxSize258:]

			s.state = stateMetablockBegin
			fallthrough

			/* Fall through. */
		case stateMetablockBegin:
			decoderStateMetablockBegin(s)

			s.state = stateMetablockHeader
			fallthrough

			/* Fall through. */
		case stateMetablockHeader:
			result = decodeMetaBlockLength(s, br)
			/* Reads 2 - 31 bits. */
			if result != decoderSuccess {
				break
			}

			if s.is_metadata != 0 || s.is_uncompressed != 0 {
				if !bitReaderJumpToByteBoundary(br) {
					result = decoderErrorFormatPadding1
					break
				}
			}

			if s.is_metadata != 0 {
				s.state = stateMetadata
				break
			}

			if s.meta_block_remaining_len == 0 {
				s.state = stateMetablockDone
				break
			}

			calculateRingBufferSize(s)
			if s.is_uncompressed != 0 {
				s.state = stateUncompressed
				break
			}

			s.loop_counter = 0
			s.state = stateHuffmanCode0

		case stateUncompressed:
			result = copyUncompressedBlockToOutput(available_out, next_out, nil, s)
			if result == decoderSuccess {
				s.state = stateMetablockDone
			}

		case stateMetadata:
			for ; s.meta_block_remaining_len > 0; s.meta_block_remaining_len-- {
				var bits uint32

				/* Read one byte and ignore it. */
				if !safeReadBits(br, 8, &bits) {
					result = decoderNeedsMoreInput
					break
				}
			}

			if result == decoderSuccess {
				s.state = stateMetablockDone
			}

		case stateHuffmanCode0:
			if s.loop_counter >= 3 {
				s.state = stateMetablockHeader2
				break
			}

			/* Reads 1..11 bits. */
			result = decodeVarLenUint8(s, br, &s.num_block_types[s.loop_counter])

			if result != decoderSuccess {
				break
			}

			s.num_block_types[s.loop_counter]++
			if s.num_block_types[s.loop_counter] < 2 {
				s.loop_counter++
				break
			}

			s.state = stateHuffmanCode1
			fallthrough

		case stateHuffmanCode1:
			{
				var alphabet_size uint32 = s.num_block_types[s.loop_counter] + 2
				var tree_offset int = s.loop_counter * huffmanMaxSize258
				result = readHuffmanCode(alphabet_size, alphabet_size, s.block_type_trees[tree_offset:], nil, s)
				if result != decoderSuccess {
					break
				}
				s.state = stateHuffmanCode2
			}
			fallthrough

		case stateHuffmanCode2:
			{
				var alphabet_size uint32 = numBlockLenSymbols
				var tree_offset int = s.loop_counter * huffmanMaxSize26
				result = readHuffmanCode(alphabet_size, alphabet_size, s.block_len_trees[tree_offset:], nil, s)
				if result != decoderSuccess {
					break
				}
				s.state = stateHuffmanCode3
			}
			fallthrough

		case stateHuffmanCode3:
			var tree_offset int = s.loop_counter * huffmanMaxSize26
			if !safeReadBlockLength(s, &s.block_length[s.loop_counter], s.block_len_trees[tree_offset:], br) {
				result = decoderNeedsMoreInput
				break
			}

			s.loop_counter++
			s.state = stateHuffmanCode0

		case stateMetablockHeader2:
			{
				var bits uint32
				if !safeReadBits(br, 6, &bits) {
					result = decoderNeedsMoreInput
					break
				}

				s.distance_postfix_bits = bits & bitMask(2)
				bits >>= 2
				s.num_direct_distance_codes = numDistanceShortCodes + (bits << s.distance_postfix_bits)
				s.distance_postfix_mask = int(bitMask(s.distance_postfix_bits))
				s.context_modes = make([]byte, uint(s.num_block_types[0]))
				if s.context_modes == nil {
					result = decoderErrorAllocContextModes
					break
				}

				s.loop_counter = 0
				s.state = stateContextModes
			}
			fallthrough

		case stateContextModes:
			result = readContextModes(s)

			if result != decoderSuccess {
				break
			}

			s.state = stateContextMap1
			fallthrough

		case stateContextMap1:
			result = decodeContextMap(s.num_block_types[0]<<literalContextBits, &s.num_literal_htrees, &s.context_map, s)

			if result != decoderSuccess {
				break
			}

			detectTrivialLiteralBlockTypes(s)
			s.state = stateContextMap2
			fallthrough

		case stateContextMap2:
			{
				var num_direct_codes uint32 = s.num_direct_distance_codes - numDistanceShortCodes
				var num_distance_codes uint32
				var max_distance_symbol uint32
				if s.large_window {
					num_distance_codes = uint32(distanceAlphabetSize(uint(s.distance_postfix_bits), uint(num_direct_codes), largeMaxDistanceBits))
					max_distance_symbol = maxDistanceSymbol(num_direct_codes, s.distance_postfix_bits)
				} else {
					num_distance_codes = uint32(distanceAlphabetSize(uint(s.distance_postfix_bits), uint(num_direct_codes), maxDistanceBits))
					max_distance_symbol = num_distance_codes
				}
				var allocation_success bool = true
				result = decodeContextMap(s.num_block_types[2]<<distanceContextBits, &s.num_dist_htrees, &s.dist_context_map, s)
				if result != decoderSuccess {
					break
				}

				if !decoderHuffmanTreeGroupInit(s, &s.literal_hgroup, numLiteralSymbols, numLiteralSymbols, s.num_literal_htrees) {
					allocation_success = false
				}

				if !decoderHuffmanTreeGroupInit(s, &s.insert_copy_hgroup, numCommandSymbols, numCommandSymbols, s.num_block_types[1]) {
					allocation_success = false
				}

				if !decoderHuffmanTreeGroupInit(s, &s.distance_hgroup, num_distance_codes, max_distance_symbol, s.num_dist_htrees) {
					allocation_success = false
				}

				if !allocation_success {
					return saveErrorCode(s, decoderErrorAllocTreeGroups)
				}

				s.loop_counter = 0
				s.state = stateTreeGroup
			}
			fallthrough

		case stateTreeGroup:
			var hgroup *huffmanTreeGroup = nil
			switch s.loop_counter {
			case 0:
				hgroup = &s.literal_hgroup
			case 1:
				hgroup = &s.insert_copy_hgroup
			case 2:
				hgroup = &s.distance_hgroup
			default:
				return saveErrorCode(s, decoderErrorUnreachable)
			}

			result = huffmanTreeGroupDecode(hgroup, s)
			if result != decoderSuccess {
				break
			}
			s.loop_counter++
			if s.loop_counter >= 3 {
				prepareLiteralDecoding(s)
				s.dist_context_map_slice = s.dist_context_map
				s.htree_command = []huffmanCode(s.insert_copy_hgroup.htrees[0])
				if !ensureRingBuffer(s) {
					result = decoderErrorAllocRingBuffer2
					break
				}

				s.state = stateCommandBegin
			}

		case stateCommandBegin, stateCommandInner, stateCommandPostDecodeLiterals, stateCommandPostWrapCopy:
			result = processCommands(s)

			if result == decoderNeedsMoreInput {
				result = safeProcessCommands(s)
			}

		case stateCommandInnerWrite, stateCommandPostWrite1, stateCommandPostWrite2:
			result = writeRingBuffer(s, available_out, next_out, nil, false)

			if result != decoderSuccess {
				break
			}

			wrapRingBuffer(s)
			if s.ringbuffer_size == 1<<s.window_bits {
				s.max_distance = s.max_backward_distance
			}

			if s.state == stateCommandPostWrite1 {
				if s.meta_block_remaining_len == 0 {
					/* Next metablock, if any. */
					s.state = stateMetablockDone
				} else {
					s.state = stateCommandBegin
				}

				break
			} else if s.state == stateCommandPostWrite2 {
				s.state = stateCommandPostWrapCopy /* BROTLI_STATE_COMMAND_INNER_WRITE */
			} else {
				if s.loop_counter == 0 {
					if s.meta_block_remaining_len == 0 {
						s.state = stateMetablockDone
					} else {
						s.state = stateCommandPostDecodeLiterals
					}

					break
				}

				s.state = stateCommandInner
			}

		case stateMetablockDone:
			if s.meta_block_remaining_len < 0 {
				result = decoderErrorFormatBlockLength2
				break
			}

			decoderStateCleanupAfterMetablock(s)
			if s.is_last_metablock == 0 {
				s.state = stateMetablockBegin
				break
			}

			if !bitReaderJumpToByteBoundary(br) {
				result = decoderErrorFormatPadding2
				break
			}

			if s.buffer_length == 0 {
				bitReaderUnload(br)
				*available_in = br.input_len - br.byte_pos
				*next_in = br.input[br.byte_pos:]
			}

			s.state = stateDone
			fallthrough

		case stateDone:
			if s.ringbuffer != nil {
				result = writeRingBuffer(s, available_out, next_out, nil, true)
				if result != decoderSuccess {
					break
				}
			}

			return saveErrorCode(s, result)
		}
	}

	return saveErrorCode(s, result)
}

func decoderHasMoreOutput(s *Reader) bool {
	/* After unrecoverable error remaining output is considered nonsensical. */
	if int(s.error_code) < 0 {
		return false
	}

	return s.ringbuffer != nil && unwrittenBytes(s, false) != 0
}

func decoderGetErrorCode(s *Reader) int {
	return int(s.error_code)
}

func decoderErrorString(c int) string {
	switch c {
	case decoderNoError:
		return "NO_ERROR"
	case decoderSuccess:
		return "SUCCESS"
	case decoderNeedsMoreInput:
		return "NEEDS_MORE_INPUT"
	case decoderNeedsMoreOutput:
		return "NEEDS_MORE_OUTPUT"
	case decoderErrorFormatExuberantNibble:
		return "EXUBERANT_NIBBLE"
	case decoderErrorFormatReserved:
		return "RESERVED"
	case decoderErrorFormatExuberantMetaNibble:
		return "EXUBERANT_META_NIBBLE"
	case decoderErrorFormatSimpleHuffmanAlphabet:
		return "SIMPLE_HUFFMAN_ALPHABET"
	case decoderErrorFormatSimpleHuffmanSame:
		return "SIMPLE_HUFFMAN_SAME"
	case decoderErrorFormatClSpace:
		return "CL_SPACE"
	case decoderErrorFormatHuffmanSpace:
		return "HUFFMAN_SPACE"
	case decoderErrorFormatContextMapRepeat:
		return "CONTEXT_MAP_REPEAT"
	case decoderErrorFormatBlockLength1:
		return "BLOCK_LENGTH_1"
	case decoderErrorFormatBlockLength2:
		return "BLOCK_LENGTH_2"
	case decoderErrorFormatTransform:
		return "TRANSFORM"
	case decoderErrorFormatDictionary:
		return "DICTIONARY"
	case decoderErrorFormatWindowBits:
		return "WINDOW_BITS"
	case decoderErrorFormatPadding1:
		return "PADDING_1"
	case decoderErrorFormatPadding2:
		return "PADDING_2"
	case decoderErrorFormatDistance:
		return "DISTANCE"
	case decoderErrorDictionaryNotSet:
		return "DICTIONARY_NOT_SET"
	case decoderErrorInvalidArguments:
		return "INVALID_ARGUMENTS"
	case decoderErrorAllocContextModes:
		return "CONTEXT_MODES"
	case decoderErrorAllocTreeGroups:
		return "TREE_GROUPS"
	case decoderErrorAllocContextMap:
		return "CONTEXT_MAP"
	case decoderErrorAllocRingBuffer1:
		return "RING_BUFFER_1"
	case decoderErrorAllocRingBuffer2:
		return "RING_BUFFER_2"
	case decoderErrorAllocBlockTypeTrees:
		return "BLOCK_TYPE_TREES"
	case decoderErrorUnreachable:
		return "UNREACHABLE"
	default:
		return "INVALID"
	}
}