block_splitter_distance.go 13.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
package brotli

import "math"

/* Copyright 2013 Google Inc. All Rights Reserved.

   Distributed under MIT license.
   See file LICENSE for detail or copy at https://opensource.org/licenses/MIT
*/

func initialEntropyCodesDistance(data []uint16, length uint, stride uint, num_histograms uint, histograms []histogramDistance) {
	var seed uint32 = 7
	var block_length uint = length / num_histograms
	var i uint
	clearHistogramsDistance(histograms, num_histograms)
	for i = 0; i < num_histograms; i++ {
		var pos uint = length * i / num_histograms
		if i != 0 {
			pos += uint(myRand(&seed) % uint32(block_length))
		}

		if pos+stride >= length {
			pos = length - stride - 1
		}

		histogramAddVectorDistance(&histograms[i], data[pos:], stride)
	}
}

func randomSampleDistance(seed *uint32, data []uint16, length uint, stride uint, sample *histogramDistance) {
	var pos uint = 0
	if stride >= length {
		stride = length
	} else {
		pos = uint(myRand(seed) % uint32(length-stride+1))
	}

	histogramAddVectorDistance(sample, data[pos:], stride)
}

func refineEntropyCodesDistance(data []uint16, length uint, stride uint, num_histograms uint, histograms []histogramDistance) {
	var iters uint = kIterMulForRefining*length/stride + kMinItersForRefining
	var seed uint32 = 7
	var iter uint
	iters = ((iters + num_histograms - 1) / num_histograms) * num_histograms
	for iter = 0; iter < iters; iter++ {
		var sample histogramDistance
		histogramClearDistance(&sample)
		randomSampleDistance(&seed, data, length, stride, &sample)
		histogramAddHistogramDistance(&histograms[iter%num_histograms], &sample)
	}
}

/* Assigns a block id from the range [0, num_histograms) to each data element
   in data[0..length) and fills in block_id[0..length) with the assigned values.
   Returns the number of blocks, i.e. one plus the number of block switches. */
func findBlocksDistance(data []uint16, length uint, block_switch_bitcost float64, num_histograms uint, histograms []histogramDistance, insert_cost []float64, cost []float64, switch_signal []byte, block_id []byte) uint {
	var data_size uint = histogramDataSizeDistance()
	var bitmaplen uint = (num_histograms + 7) >> 3
	var num_blocks uint = 1
	var i uint
	var j uint
	assert(num_histograms <= 256)
	if num_histograms <= 1 {
		for i = 0; i < length; i++ {
			block_id[i] = 0
		}

		return 1
	}

	for i := 0; i < int(data_size*num_histograms); i++ {
		insert_cost[i] = 0
	}
	for i = 0; i < num_histograms; i++ {
		insert_cost[i] = fastLog2(uint(uint32(histograms[i].total_count_)))
	}

	for i = data_size; i != 0; {
		i--
		for j = 0; j < num_histograms; j++ {
			insert_cost[i*num_histograms+j] = insert_cost[j] - bitCost(uint(histograms[j].data_[i]))
		}
	}

	for i := 0; i < int(num_histograms); i++ {
		cost[i] = 0
	}
	for i := 0; i < int(length*bitmaplen); i++ {
		switch_signal[i] = 0
	}

	/* After each iteration of this loop, cost[k] will contain the difference
	   between the minimum cost of arriving at the current byte position using
	   entropy code k, and the minimum cost of arriving at the current byte
	   position. This difference is capped at the block switch cost, and if it
	   reaches block switch cost, it means that when we trace back from the last
	   position, we need to switch here. */
	for i = 0; i < length; i++ {
		var byte_ix uint = i
		var ix uint = byte_ix * bitmaplen
		var insert_cost_ix uint = uint(data[byte_ix]) * num_histograms
		var min_cost float64 = 1e99
		var block_switch_cost float64 = block_switch_bitcost
		var k uint
		for k = 0; k < num_histograms; k++ {
			/* We are coding the symbol in data[byte_ix] with entropy code k. */
			cost[k] += insert_cost[insert_cost_ix+k]

			if cost[k] < min_cost {
				min_cost = cost[k]
				block_id[byte_ix] = byte(k)
			}
		}

		/* More blocks for the beginning. */
		if byte_ix < 2000 {
			block_switch_cost *= 0.77 + 0.07*float64(byte_ix)/2000
		}

		for k = 0; k < num_histograms; k++ {
			cost[k] -= min_cost
			if cost[k] >= block_switch_cost {
				var mask byte = byte(1 << (k & 7))
				cost[k] = block_switch_cost
				assert(k>>3 < bitmaplen)
				switch_signal[ix+(k>>3)] |= mask
				/* Trace back from the last position and switch at the marked places. */
			}
		}
	}
	{
		var byte_ix uint = length - 1
		var ix uint = byte_ix * bitmaplen
		var cur_id byte = block_id[byte_ix]
		for byte_ix > 0 {
			var mask byte = byte(1 << (cur_id & 7))
			assert(uint(cur_id)>>3 < bitmaplen)
			byte_ix--
			ix -= bitmaplen
			if switch_signal[ix+uint(cur_id>>3)]&mask != 0 {
				if cur_id != block_id[byte_ix] {
					cur_id = block_id[byte_ix]
					num_blocks++
				}
			}

			block_id[byte_ix] = cur_id
		}
	}

	return num_blocks
}

var remapBlockIdsDistance_kInvalidId uint16 = 256

func remapBlockIdsDistance(block_ids []byte, length uint, new_id []uint16, num_histograms uint) uint {
	var next_id uint16 = 0
	var i uint
	for i = 0; i < num_histograms; i++ {
		new_id[i] = remapBlockIdsDistance_kInvalidId
	}

	for i = 0; i < length; i++ {
		assert(uint(block_ids[i]) < num_histograms)
		if new_id[block_ids[i]] == remapBlockIdsDistance_kInvalidId {
			new_id[block_ids[i]] = next_id
			next_id++
		}
	}

	for i = 0; i < length; i++ {
		block_ids[i] = byte(new_id[block_ids[i]])
		assert(uint(block_ids[i]) < num_histograms)
	}

	assert(uint(next_id) <= num_histograms)
	return uint(next_id)
}

func buildBlockHistogramsDistance(data []uint16, length uint, block_ids []byte, num_histograms uint, histograms []histogramDistance) {
	var i uint
	clearHistogramsDistance(histograms, num_histograms)
	for i = 0; i < length; i++ {
		histogramAddDistance(&histograms[block_ids[i]], uint(data[i]))
	}
}

var clusterBlocksDistance_kInvalidIndex uint32 = math.MaxUint32

func clusterBlocksDistance(data []uint16, length uint, num_blocks uint, block_ids []byte, split *blockSplit) {
	var histogram_symbols []uint32 = make([]uint32, num_blocks)
	var block_lengths []uint32 = make([]uint32, num_blocks)
	var expected_num_clusters uint = clustersPerBatch * (num_blocks + histogramsPerBatch - 1) / histogramsPerBatch
	var all_histograms_size uint = 0
	var all_histograms_capacity uint = expected_num_clusters
	var all_histograms []histogramDistance = make([]histogramDistance, all_histograms_capacity)
	var cluster_size_size uint = 0
	var cluster_size_capacity uint = expected_num_clusters
	var cluster_size []uint32 = make([]uint32, cluster_size_capacity)
	var num_clusters uint = 0
	var histograms []histogramDistance = make([]histogramDistance, brotli_min_size_t(num_blocks, histogramsPerBatch))
	var max_num_pairs uint = histogramsPerBatch * histogramsPerBatch / 2
	var pairs_capacity uint = max_num_pairs + 1
	var pairs []histogramPair = make([]histogramPair, pairs_capacity)
	var pos uint = 0
	var clusters []uint32
	var num_final_clusters uint
	var new_index []uint32
	var i uint
	var sizes = [histogramsPerBatch]uint32{0}
	var new_clusters = [histogramsPerBatch]uint32{0}
	var symbols = [histogramsPerBatch]uint32{0}
	var remap = [histogramsPerBatch]uint32{0}

	for i := 0; i < int(num_blocks); i++ {
		block_lengths[i] = 0
	}
	{
		var block_idx uint = 0
		for i = 0; i < length; i++ {
			assert(block_idx < num_blocks)
			block_lengths[block_idx]++
			if i+1 == length || block_ids[i] != block_ids[i+1] {
				block_idx++
			}
		}

		assert(block_idx == num_blocks)
	}

	for i = 0; i < num_blocks; i += histogramsPerBatch {
		var num_to_combine uint = brotli_min_size_t(num_blocks-i, histogramsPerBatch)
		var num_new_clusters uint
		var j uint
		for j = 0; j < num_to_combine; j++ {
			var k uint
			histogramClearDistance(&histograms[j])
			for k = 0; uint32(k) < block_lengths[i+j]; k++ {
				histogramAddDistance(&histograms[j], uint(data[pos]))
				pos++
			}

			histograms[j].bit_cost_ = populationCostDistance(&histograms[j])
			new_clusters[j] = uint32(j)
			symbols[j] = uint32(j)
			sizes[j] = 1
		}

		num_new_clusters = histogramCombineDistance(histograms, sizes[:], symbols[:], new_clusters[:], []histogramPair(pairs), num_to_combine, num_to_combine, histogramsPerBatch, max_num_pairs)
		if all_histograms_capacity < (all_histograms_size + num_new_clusters) {
			var _new_size uint
			if all_histograms_capacity == 0 {
				_new_size = all_histograms_size + num_new_clusters
			} else {
				_new_size = all_histograms_capacity
			}
			var new_array []histogramDistance
			for _new_size < (all_histograms_size + num_new_clusters) {
				_new_size *= 2
			}
			new_array = make([]histogramDistance, _new_size)
			if all_histograms_capacity != 0 {
				copy(new_array, all_histograms[:all_histograms_capacity])
			}

			all_histograms = new_array
			all_histograms_capacity = _new_size
		}

		brotli_ensure_capacity_uint32_t(&cluster_size, &cluster_size_capacity, cluster_size_size+num_new_clusters)
		for j = 0; j < num_new_clusters; j++ {
			all_histograms[all_histograms_size] = histograms[new_clusters[j]]
			all_histograms_size++
			cluster_size[cluster_size_size] = sizes[new_clusters[j]]
			cluster_size_size++
			remap[new_clusters[j]] = uint32(j)
		}

		for j = 0; j < num_to_combine; j++ {
			histogram_symbols[i+j] = uint32(num_clusters) + remap[symbols[j]]
		}

		num_clusters += num_new_clusters
		assert(num_clusters == cluster_size_size)
		assert(num_clusters == all_histograms_size)
	}

	histograms = nil

	max_num_pairs = brotli_min_size_t(64*num_clusters, (num_clusters/2)*num_clusters)
	if pairs_capacity < max_num_pairs+1 {
		pairs = nil
		pairs = make([]histogramPair, (max_num_pairs + 1))
	}

	clusters = make([]uint32, num_clusters)
	for i = 0; i < num_clusters; i++ {
		clusters[i] = uint32(i)
	}

	num_final_clusters = histogramCombineDistance(all_histograms, cluster_size, histogram_symbols, clusters, pairs, num_clusters, num_blocks, maxNumberOfBlockTypes, max_num_pairs)
	pairs = nil
	cluster_size = nil

	new_index = make([]uint32, num_clusters)
	for i = 0; i < num_clusters; i++ {
		new_index[i] = clusterBlocksDistance_kInvalidIndex
	}
	pos = 0
	{
		var next_index uint32 = 0
		for i = 0; i < num_blocks; i++ {
			var histo histogramDistance
			var j uint
			var best_out uint32
			var best_bits float64
			histogramClearDistance(&histo)
			for j = 0; uint32(j) < block_lengths[i]; j++ {
				histogramAddDistance(&histo, uint(data[pos]))
				pos++
			}

			if i == 0 {
				best_out = histogram_symbols[0]
			} else {
				best_out = histogram_symbols[i-1]
			}
			best_bits = histogramBitCostDistanceDistance(&histo, &all_histograms[best_out])
			for j = 0; j < num_final_clusters; j++ {
				var cur_bits float64 = histogramBitCostDistanceDistance(&histo, &all_histograms[clusters[j]])
				if cur_bits < best_bits {
					best_bits = cur_bits
					best_out = clusters[j]
				}
			}

			histogram_symbols[i] = best_out
			if new_index[best_out] == clusterBlocksDistance_kInvalidIndex {
				new_index[best_out] = next_index
				next_index++
			}
		}
	}

	clusters = nil
	all_histograms = nil
	brotli_ensure_capacity_uint8_t(&split.types, &split.types_alloc_size, num_blocks)
	brotli_ensure_capacity_uint32_t(&split.lengths, &split.lengths_alloc_size, num_blocks)
	{
		var cur_length uint32 = 0
		var block_idx uint = 0
		var max_type byte = 0
		for i = 0; i < num_blocks; i++ {
			cur_length += block_lengths[i]
			if i+1 == num_blocks || histogram_symbols[i] != histogram_symbols[i+1] {
				var id byte = byte(new_index[histogram_symbols[i]])
				split.types[block_idx] = id
				split.lengths[block_idx] = cur_length
				max_type = brotli_max_uint8_t(max_type, id)
				cur_length = 0
				block_idx++
			}
		}

		split.num_blocks = block_idx
		split.num_types = uint(max_type) + 1
	}

	new_index = nil
	block_lengths = nil
	histogram_symbols = nil
}

func splitByteVectorDistance(data []uint16, length uint, literals_per_histogram uint, max_histograms uint, sampling_stride_length uint, block_switch_cost float64, params *encoderParams, split *blockSplit) {
	var data_size uint = histogramDataSizeDistance()
	var num_histograms uint = length/literals_per_histogram + 1
	var histograms []histogramDistance
	if num_histograms > max_histograms {
		num_histograms = max_histograms
	}

	if length == 0 {
		split.num_types = 1
		return
	} else if length < kMinLengthForBlockSplitting {
		brotli_ensure_capacity_uint8_t(&split.types, &split.types_alloc_size, split.num_blocks+1)
		brotli_ensure_capacity_uint32_t(&split.lengths, &split.lengths_alloc_size, split.num_blocks+1)
		split.num_types = 1
		split.types[split.num_blocks] = 0
		split.lengths[split.num_blocks] = uint32(length)
		split.num_blocks++
		return
	}

	histograms = make([]histogramDistance, num_histograms)

	/* Find good entropy codes. */
	initialEntropyCodesDistance(data, length, sampling_stride_length, num_histograms, histograms)

	refineEntropyCodesDistance(data, length, sampling_stride_length, num_histograms, histograms)
	{
		var block_ids []byte = make([]byte, length)
		var num_blocks uint = 0
		var bitmaplen uint = (num_histograms + 7) >> 3
		var insert_cost []float64 = make([]float64, (data_size * num_histograms))
		var cost []float64 = make([]float64, num_histograms)
		var switch_signal []byte = make([]byte, (length * bitmaplen))
		var new_id []uint16 = make([]uint16, num_histograms)
		var iters uint
		if params.quality < hqZopflificationQuality {
			iters = 3
		} else {
			iters = 10
		}
		/* Find a good path through literals with the good entropy codes. */

		var i uint
		for i = 0; i < iters; i++ {
			num_blocks = findBlocksDistance(data, length, block_switch_cost, num_histograms, histograms, insert_cost, cost, switch_signal, block_ids)
			num_histograms = remapBlockIdsDistance(block_ids, length, new_id, num_histograms)
			buildBlockHistogramsDistance(data, length, block_ids, num_histograms, histograms)
		}

		insert_cost = nil
		cost = nil
		switch_signal = nil
		new_id = nil
		histograms = nil
		clusterBlocksDistance(data, length, num_blocks, block_ids, split)
		block_ids = nil
	}
}