1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
/*
 * Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
 * All rights reserved.
 *
 * This source code is licensed under both the BSD-style license (found in the
 * LICENSE file in the root directory of this source tree) and the GPLv2 (found
 * in the COPYING file in the root directory of this source tree).
 * You may select, at your option, one of the above-listed licenses.
 */

/* *****************************************************************************
 * Constructs a dictionary using a heuristic based on the following paper:
 *
 * Liao, Petri, Moffat, Wirth
 * Effective Construction of Relative Lempel-Ziv Dictionaries
 * Published in WWW 2016.
 *
 * Adapted from code originally written by @ot (Giuseppe Ottaviano).
 ******************************************************************************/

/*-*************************************
*  Dependencies
***************************************/
#include <stdio.h>  /* fprintf */
#include <stdlib.h> /* malloc, free, qsort */
#include <string.h> /* memset */
#include <time.h>   /* clock */

#include "mem.h" /* read */
#include "pool.h"
#include "threading.h"
#include "cover.h"
#include "zstd_internal.h" /* includes zstd.h */
#ifndef ZDICT_STATIC_LINKING_ONLY
#define ZDICT_STATIC_LINKING_ONLY
#endif
#include "zdict.h"

/*-*************************************
*  Constants
***************************************/
#define COVER_MAX_SAMPLES_SIZE (sizeof(size_t) == 8 ? ((unsigned)-1) : ((unsigned)1 GB))
#define DEFAULT_SPLITPOINT 1.0

/*-*************************************
*  Console display
***************************************/
static int g_displayLevel = 2;
#define DISPLAY(...)                                                           \
  {                                                                            \
    fprintf(stderr, __VA_ARGS__);                                              \
    fflush(stderr);                                                            \
  }
#define LOCALDISPLAYLEVEL(displayLevel, l, ...)                                \
  if (displayLevel >= l) {                                                     \
    DISPLAY(__VA_ARGS__);                                                      \
  } /* 0 : no display;   1: errors;   2: default;  3: details;  4: debug */
#define DISPLAYLEVEL(l, ...) LOCALDISPLAYLEVEL(g_displayLevel, l, __VA_ARGS__)

#define LOCALDISPLAYUPDATE(displayLevel, l, ...)                               \
  if (displayLevel >= l) {                                                     \
    if ((clock() - g_time > refreshRate) || (displayLevel >= 4)) {             \
      g_time = clock();                                                        \
      DISPLAY(__VA_ARGS__);                                                    \
    }                                                                          \
  }
#define DISPLAYUPDATE(l, ...) LOCALDISPLAYUPDATE(g_displayLevel, l, __VA_ARGS__)
static const clock_t refreshRate = CLOCKS_PER_SEC * 15 / 100;
static clock_t g_time = 0;

/*-*************************************
* Hash table
***************************************
* A small specialized hash map for storing activeDmers.
* The map does not resize, so if it becomes full it will loop forever.
* Thus, the map must be large enough to store every value.
* The map implements linear probing and keeps its load less than 0.5.
*/

#define MAP_EMPTY_VALUE ((U32)-1)
typedef struct COVER_map_pair_t_s {
  U32 key;
  U32 value;
} COVER_map_pair_t;

typedef struct COVER_map_s {
  COVER_map_pair_t *data;
  U32 sizeLog;
  U32 size;
  U32 sizeMask;
} COVER_map_t;

/**
 * Clear the map.
 */
static void COVER_map_clear(COVER_map_t *map) {
  memset(map->data, MAP_EMPTY_VALUE, map->size * sizeof(COVER_map_pair_t));
}

/**
 * Initializes a map of the given size.
 * Returns 1 on success and 0 on failure.
 * The map must be destroyed with COVER_map_destroy().
 * The map is only guaranteed to be large enough to hold size elements.
 */
static int COVER_map_init(COVER_map_t *map, U32 size) {
  map->sizeLog = ZSTD_highbit32(size) + 2;
  map->size = (U32)1 << map->sizeLog;
  map->sizeMask = map->size - 1;
  map->data = (COVER_map_pair_t *)malloc(map->size * sizeof(COVER_map_pair_t));
  if (!map->data) {
    map->sizeLog = 0;
    map->size = 0;
    return 0;
  }
  COVER_map_clear(map);
  return 1;
}

/**
 * Internal hash function
 */
static const U32 prime4bytes = 2654435761U;
static U32 COVER_map_hash(COVER_map_t *map, U32 key) {
  return (key * prime4bytes) >> (32 - map->sizeLog);
}

/**
 * Helper function that returns the index that a key should be placed into.
 */
static U32 COVER_map_index(COVER_map_t *map, U32 key) {
  const U32 hash = COVER_map_hash(map, key);
  U32 i;
  for (i = hash;; i = (i + 1) & map->sizeMask) {
    COVER_map_pair_t *pos = &map->data[i];
    if (pos->value == MAP_EMPTY_VALUE) {
      return i;
    }
    if (pos->key == key) {
      return i;
    }
  }
}

/**
 * Returns the pointer to the value for key.
 * If key is not in the map, it is inserted and the value is set to 0.
 * The map must not be full.
 */
static U32 *COVER_map_at(COVER_map_t *map, U32 key) {
  COVER_map_pair_t *pos = &map->data[COVER_map_index(map, key)];
  if (pos->value == MAP_EMPTY_VALUE) {
    pos->key = key;
    pos->value = 0;
  }
  return &pos->value;
}

/**
 * Deletes key from the map if present.
 */
static void COVER_map_remove(COVER_map_t *map, U32 key) {
  U32 i = COVER_map_index(map, key);
  COVER_map_pair_t *del = &map->data[i];
  U32 shift = 1;
  if (del->value == MAP_EMPTY_VALUE) {
    return;
  }
  for (i = (i + 1) & map->sizeMask;; i = (i + 1) & map->sizeMask) {
    COVER_map_pair_t *const pos = &map->data[i];
    /* If the position is empty we are done */
    if (pos->value == MAP_EMPTY_VALUE) {
      del->value = MAP_EMPTY_VALUE;
      return;
    }
    /* If pos can be moved to del do so */
    if (((i - COVER_map_hash(map, pos->key)) & map->sizeMask) >= shift) {
      del->key = pos->key;
      del->value = pos->value;
      del = pos;
      shift = 1;
    } else {
      ++shift;
    }
  }
}

/**
 * Destroys a map that is inited with COVER_map_init().
 */
static void COVER_map_destroy(COVER_map_t *map) {
  if (map->data) {
    free(map->data);
  }
  map->data = NULL;
  map->size = 0;
}

/*-*************************************
* Context
***************************************/

typedef struct {
  const BYTE *samples;
  size_t *offsets;
  const size_t *samplesSizes;
  size_t nbSamples;
  size_t nbTrainSamples;
  size_t nbTestSamples;
  U32 *suffix;
  size_t suffixSize;
  U32 *freqs;
  U32 *dmerAt;
  unsigned d;
} COVER_ctx_t;

/* We need a global context for qsort... */
static COVER_ctx_t *g_ctx = NULL;

/*-*************************************
*  Helper functions
***************************************/

/**
 * Returns the sum of the sample sizes.
 */
size_t COVER_sum(const size_t *samplesSizes, unsigned nbSamples) {
  size_t sum = 0;
  unsigned i;
  for (i = 0; i < nbSamples; ++i) {
    sum += samplesSizes[i];
  }
  return sum;
}

/**
 * Returns -1 if the dmer at lp is less than the dmer at rp.
 * Return 0 if the dmers at lp and rp are equal.
 * Returns 1 if the dmer at lp is greater than the dmer at rp.
 */
static int COVER_cmp(COVER_ctx_t *ctx, const void *lp, const void *rp) {
  U32 const lhs = *(U32 const *)lp;
  U32 const rhs = *(U32 const *)rp;
  return memcmp(ctx->samples + lhs, ctx->samples + rhs, ctx->d);
}
/**
 * Faster version for d <= 8.
 */
static int COVER_cmp8(COVER_ctx_t *ctx, const void *lp, const void *rp) {
  U64 const mask = (ctx->d == 8) ? (U64)-1 : (((U64)1 << (8 * ctx->d)) - 1);
  U64 const lhs = MEM_readLE64(ctx->samples + *(U32 const *)lp) & mask;
  U64 const rhs = MEM_readLE64(ctx->samples + *(U32 const *)rp) & mask;
  if (lhs < rhs) {
    return -1;
  }
  return (lhs > rhs);
}

/**
 * Same as COVER_cmp() except ties are broken by pointer value
 * NOTE: g_ctx must be set to call this function.  A global is required because
 * qsort doesn't take an opaque pointer.
 */
static int COVER_strict_cmp(const void *lp, const void *rp) {
  int result = COVER_cmp(g_ctx, lp, rp);
  if (result == 0) {
    result = lp < rp ? -1 : 1;
  }
  return result;
}
/**
 * Faster version for d <= 8.
 */
static int COVER_strict_cmp8(const void *lp, const void *rp) {
  int result = COVER_cmp8(g_ctx, lp, rp);
  if (result == 0) {
    result = lp < rp ? -1 : 1;
  }
  return result;
}

/**
 * Returns the first pointer in [first, last) whose element does not compare
 * less than value.  If no such element exists it returns last.
 */
static const size_t *COVER_lower_bound(const size_t *first, const size_t *last,
                                       size_t value) {
  size_t count = last - first;
  while (count != 0) {
    size_t step = count / 2;
    const size_t *ptr = first;
    ptr += step;
    if (*ptr < value) {
      first = ++ptr;
      count -= step + 1;
    } else {
      count = step;
    }
  }
  return first;
}

/**
 * Generic groupBy function.
 * Groups an array sorted by cmp into groups with equivalent values.
 * Calls grp for each group.
 */
static void
COVER_groupBy(const void *data, size_t count, size_t size, COVER_ctx_t *ctx,
              int (*cmp)(COVER_ctx_t *, const void *, const void *),
              void (*grp)(COVER_ctx_t *, const void *, const void *)) {
  const BYTE *ptr = (const BYTE *)data;
  size_t num = 0;
  while (num < count) {
    const BYTE *grpEnd = ptr + size;
    ++num;
    while (num < count && cmp(ctx, ptr, grpEnd) == 0) {
      grpEnd += size;
      ++num;
    }
    grp(ctx, ptr, grpEnd);
    ptr = grpEnd;
  }
}

/*-*************************************
*  Cover functions
***************************************/

/**
 * Called on each group of positions with the same dmer.
 * Counts the frequency of each dmer and saves it in the suffix array.
 * Fills `ctx->dmerAt`.
 */
static void COVER_group(COVER_ctx_t *ctx, const void *group,
                        const void *groupEnd) {
  /* The group consists of all the positions with the same first d bytes. */
  const U32 *grpPtr = (const U32 *)group;
  const U32 *grpEnd = (const U32 *)groupEnd;
  /* The dmerId is how we will reference this dmer.
   * This allows us to map the whole dmer space to a much smaller space, the
   * size of the suffix array.
   */
  const U32 dmerId = (U32)(grpPtr - ctx->suffix);
  /* Count the number of samples this dmer shows up in */
  U32 freq = 0;
  /* Details */
  const size_t *curOffsetPtr = ctx->offsets;
  const size_t *offsetsEnd = ctx->offsets + ctx->nbSamples;
  /* Once *grpPtr >= curSampleEnd this occurrence of the dmer is in a
   * different sample than the last.
   */
  size_t curSampleEnd = ctx->offsets[0];
  for (; grpPtr != grpEnd; ++grpPtr) {
    /* Save the dmerId for this position so we can get back to it. */
    ctx->dmerAt[*grpPtr] = dmerId;
    /* Dictionaries only help for the first reference to the dmer.
     * After that zstd can reference the match from the previous reference.
     * So only count each dmer once for each sample it is in.
     */
    if (*grpPtr < curSampleEnd) {
      continue;
    }
    freq += 1;
    /* Binary search to find the end of the sample *grpPtr is in.
     * In the common case that grpPtr + 1 == grpEnd we can skip the binary
     * search because the loop is over.
     */
    if (grpPtr + 1 != grpEnd) {
      const size_t *sampleEndPtr =
          COVER_lower_bound(curOffsetPtr, offsetsEnd, *grpPtr);
      curSampleEnd = *sampleEndPtr;
      curOffsetPtr = sampleEndPtr + 1;
    }
  }
  /* At this point we are never going to look at this segment of the suffix
   * array again.  We take advantage of this fact to save memory.
   * We store the frequency of the dmer in the first position of the group,
   * which is dmerId.
   */
  ctx->suffix[dmerId] = freq;
}


/**
 * Selects the best segment in an epoch.
 * Segments of are scored according to the function:
 *
 * Let F(d) be the frequency of dmer d.
 * Let S_i be the dmer at position i of segment S which has length k.
 *
 *     Score(S) = F(S_1) + F(S_2) + ... + F(S_{k-d+1})
 *
 * Once the dmer d is in the dictionay we set F(d) = 0.
 */
static COVER_segment_t COVER_selectSegment(const COVER_ctx_t *ctx, U32 *freqs,
                                           COVER_map_t *activeDmers, U32 begin,
                                           U32 end,
                                           ZDICT_cover_params_t parameters) {
  /* Constants */
  const U32 k = parameters.k;
  const U32 d = parameters.d;
  const U32 dmersInK = k - d + 1;
  /* Try each segment (activeSegment) and save the best (bestSegment) */
  COVER_segment_t bestSegment = {0, 0, 0};
  COVER_segment_t activeSegment;
  /* Reset the activeDmers in the segment */
  COVER_map_clear(activeDmers);
  /* The activeSegment starts at the beginning of the epoch. */
  activeSegment.begin = begin;
  activeSegment.end = begin;
  activeSegment.score = 0;
  /* Slide the activeSegment through the whole epoch.
   * Save the best segment in bestSegment.
   */
  while (activeSegment.end < end) {
    /* The dmerId for the dmer at the next position */
    U32 newDmer = ctx->dmerAt[activeSegment.end];
    /* The entry in activeDmers for this dmerId */
    U32 *newDmerOcc = COVER_map_at(activeDmers, newDmer);
    /* If the dmer isn't already present in the segment add its score. */
    if (*newDmerOcc == 0) {
      /* The paper suggest using the L-0.5 norm, but experiments show that it
       * doesn't help.
       */
      activeSegment.score += freqs[newDmer];
    }
    /* Add the dmer to the segment */
    activeSegment.end += 1;
    *newDmerOcc += 1;

    /* If the window is now too large, drop the first position */
    if (activeSegment.end - activeSegment.begin == dmersInK + 1) {
      U32 delDmer = ctx->dmerAt[activeSegment.begin];
      U32 *delDmerOcc = COVER_map_at(activeDmers, delDmer);
      activeSegment.begin += 1;
      *delDmerOcc -= 1;
      /* If this is the last occurence of the dmer, subtract its score */
      if (*delDmerOcc == 0) {
        COVER_map_remove(activeDmers, delDmer);
        activeSegment.score -= freqs[delDmer];
      }
    }

    /* If this segment is the best so far save it */
    if (activeSegment.score > bestSegment.score) {
      bestSegment = activeSegment;
    }
  }
  {
    /* Trim off the zero frequency head and tail from the segment. */
    U32 newBegin = bestSegment.end;
    U32 newEnd = bestSegment.begin;
    U32 pos;
    for (pos = bestSegment.begin; pos != bestSegment.end; ++pos) {
      U32 freq = freqs[ctx->dmerAt[pos]];
      if (freq != 0) {
        newBegin = MIN(newBegin, pos);
        newEnd = pos + 1;
      }
    }
    bestSegment.begin = newBegin;
    bestSegment.end = newEnd;
  }
  {
    /* Zero out the frequency of each dmer covered by the chosen segment. */
    U32 pos;
    for (pos = bestSegment.begin; pos != bestSegment.end; ++pos) {
      freqs[ctx->dmerAt[pos]] = 0;
    }
  }
  return bestSegment;
}

/**
 * Check the validity of the parameters.
 * Returns non-zero if the parameters are valid and 0 otherwise.
 */
static int COVER_checkParameters(ZDICT_cover_params_t parameters,
                                 size_t maxDictSize) {
  /* k and d are required parameters */
  if (parameters.d == 0 || parameters.k == 0) {
    return 0;
  }
  /* k <= maxDictSize */
  if (parameters.k > maxDictSize) {
    return 0;
  }
  /* d <= k */
  if (parameters.d > parameters.k) {
    return 0;
  }
  /* 0 < splitPoint <= 1 */
  if (parameters.splitPoint <= 0 || parameters.splitPoint > 1){
    return 0;
  }
  return 1;
}

/**
 * Clean up a context initialized with `COVER_ctx_init()`.
 */
static void COVER_ctx_destroy(COVER_ctx_t *ctx) {
  if (!ctx) {
    return;
  }
  if (ctx->suffix) {
    free(ctx->suffix);
    ctx->suffix = NULL;
  }
  if (ctx->freqs) {
    free(ctx->freqs);
    ctx->freqs = NULL;
  }
  if (ctx->dmerAt) {
    free(ctx->dmerAt);
    ctx->dmerAt = NULL;
  }
  if (ctx->offsets) {
    free(ctx->offsets);
    ctx->offsets = NULL;
  }
}

/**
 * Prepare a context for dictionary building.
 * The context is only dependent on the parameter `d` and can used multiple
 * times.
 * Returns 1 on success or zero on error.
 * The context must be destroyed with `COVER_ctx_destroy()`.
 */
static int COVER_ctx_init(COVER_ctx_t *ctx, const void *samplesBuffer,
                          const size_t *samplesSizes, unsigned nbSamples,
                          unsigned d, double splitPoint) {
  const BYTE *const samples = (const BYTE *)samplesBuffer;
  const size_t totalSamplesSize = COVER_sum(samplesSizes, nbSamples);
  /* Split samples into testing and training sets */
  const unsigned nbTrainSamples = splitPoint < 1.0 ? (unsigned)((double)nbSamples * splitPoint) : nbSamples;
  const unsigned nbTestSamples = splitPoint < 1.0 ? nbSamples - nbTrainSamples : nbSamples;
  const size_t trainingSamplesSize = splitPoint < 1.0 ? COVER_sum(samplesSizes, nbTrainSamples) : totalSamplesSize;
  const size_t testSamplesSize = splitPoint < 1.0 ? COVER_sum(samplesSizes + nbTrainSamples, nbTestSamples) : totalSamplesSize;
  /* Checks */
  if (totalSamplesSize < MAX(d, sizeof(U64)) ||
      totalSamplesSize >= (size_t)COVER_MAX_SAMPLES_SIZE) {
    DISPLAYLEVEL(1, "Total samples size is too large (%u MB), maximum size is %u MB\n",
                 (unsigned)(totalSamplesSize>>20), (COVER_MAX_SAMPLES_SIZE >> 20));
    return 0;
  }
  /* Check if there are at least 5 training samples */
  if (nbTrainSamples < 5) {
    DISPLAYLEVEL(1, "Total number of training samples is %u and is invalid.", nbTrainSamples);
    return 0;
  }
  /* Check if there's testing sample */
  if (nbTestSamples < 1) {
    DISPLAYLEVEL(1, "Total number of testing samples is %u and is invalid.", nbTestSamples);
    return 0;
  }
  /* Zero the context */
  memset(ctx, 0, sizeof(*ctx));
  DISPLAYLEVEL(2, "Training on %u samples of total size %u\n", nbTrainSamples,
               (unsigned)trainingSamplesSize);
  DISPLAYLEVEL(2, "Testing on %u samples of total size %u\n", nbTestSamples,
               (unsigned)testSamplesSize);
  ctx->samples = samples;
  ctx->samplesSizes = samplesSizes;
  ctx->nbSamples = nbSamples;
  ctx->nbTrainSamples = nbTrainSamples;
  ctx->nbTestSamples = nbTestSamples;
  /* Partial suffix array */
  ctx->suffixSize = trainingSamplesSize - MAX(d, sizeof(U64)) + 1;
  ctx->suffix = (U32 *)malloc(ctx->suffixSize * sizeof(U32));
  /* Maps index to the dmerID */
  ctx->dmerAt = (U32 *)malloc(ctx->suffixSize * sizeof(U32));
  /* The offsets of each file */
  ctx->offsets = (size_t *)malloc((nbSamples + 1) * sizeof(size_t));
  if (!ctx->suffix || !ctx->dmerAt || !ctx->offsets) {
    DISPLAYLEVEL(1, "Failed to allocate scratch buffers\n");
    COVER_ctx_destroy(ctx);
    return 0;
  }
  ctx->freqs = NULL;
  ctx->d = d;

  /* Fill offsets from the samplesSizes */
  {
    U32 i;
    ctx->offsets[0] = 0;
    for (i = 1; i <= nbSamples; ++i) {
      ctx->offsets[i] = ctx->offsets[i - 1] + samplesSizes[i - 1];
    }
  }
  DISPLAYLEVEL(2, "Constructing partial suffix array\n");
  {
    /* suffix is a partial suffix array.
     * It only sorts suffixes by their first parameters.d bytes.
     * The sort is stable, so each dmer group is sorted by position in input.
     */
    U32 i;
    for (i = 0; i < ctx->suffixSize; ++i) {
      ctx->suffix[i] = i;
    }
    /* qsort doesn't take an opaque pointer, so pass as a global.
     * On OpenBSD qsort() is not guaranteed to be stable, their mergesort() is.
     */
    g_ctx = ctx;
#if defined(__OpenBSD__)
    mergesort(ctx->suffix, ctx->suffixSize, sizeof(U32),
          (ctx->d <= 8 ? &COVER_strict_cmp8 : &COVER_strict_cmp));
#else
    qsort(ctx->suffix, ctx->suffixSize, sizeof(U32),
          (ctx->d <= 8 ? &COVER_strict_cmp8 : &COVER_strict_cmp));
#endif
  }
  DISPLAYLEVEL(2, "Computing frequencies\n");
  /* For each dmer group (group of positions with the same first d bytes):
   * 1. For each position we set dmerAt[position] = dmerID.  The dmerID is
   *    (groupBeginPtr - suffix).  This allows us to go from position to
   *    dmerID so we can look up values in freq.
   * 2. We calculate how many samples the dmer occurs in and save it in
   *    freqs[dmerId].
   */
  COVER_groupBy(ctx->suffix, ctx->suffixSize, sizeof(U32), ctx,
                (ctx->d <= 8 ? &COVER_cmp8 : &COVER_cmp), &COVER_group);
  ctx->freqs = ctx->suffix;
  ctx->suffix = NULL;
  return 1;
}

/**
 * Given the prepared context build the dictionary.
 */
static size_t COVER_buildDictionary(const COVER_ctx_t *ctx, U32 *freqs,
                                    COVER_map_t *activeDmers, void *dictBuffer,
                                    size_t dictBufferCapacity,
                                    ZDICT_cover_params_t parameters) {
  BYTE *const dict = (BYTE *)dictBuffer;
  size_t tail = dictBufferCapacity;
  /* Divide the data up into epochs of equal size.
   * We will select at least one segment from each epoch.
   */
  const unsigned epochs = MAX(1, (U32)(dictBufferCapacity / parameters.k / 4));
  const unsigned epochSize = (U32)(ctx->suffixSize / epochs);
  size_t epoch;
  DISPLAYLEVEL(2, "Breaking content into %u epochs of size %u\n",
                epochs, epochSize);
  /* Loop through the epochs until there are no more segments or the dictionary
   * is full.
   */
  for (epoch = 0; tail > 0; epoch = (epoch + 1) % epochs) {
    const U32 epochBegin = (U32)(epoch * epochSize);
    const U32 epochEnd = epochBegin + epochSize;
    size_t segmentSize;
    /* Select a segment */
    COVER_segment_t segment = COVER_selectSegment(
        ctx, freqs, activeDmers, epochBegin, epochEnd, parameters);
    /* If the segment covers no dmers, then we are out of content */
    if (segment.score == 0) {
      break;
    }
    /* Trim the segment if necessary and if it is too small then we are done */
    segmentSize = MIN(segment.end - segment.begin + parameters.d - 1, tail);
    if (segmentSize < parameters.d) {
      break;
    }
    /* We fill the dictionary from the back to allow the best segments to be
     * referenced with the smallest offsets.
     */
    tail -= segmentSize;
    memcpy(dict + tail, ctx->samples + segment.begin, segmentSize);
    DISPLAYUPDATE(
        2, "\r%u%%       ",
        (unsigned)(((dictBufferCapacity - tail) * 100) / dictBufferCapacity));
  }
  DISPLAYLEVEL(2, "\r%79s\r", "");
  return tail;
}

ZDICTLIB_API size_t ZDICT_trainFromBuffer_cover(
    void *dictBuffer, size_t dictBufferCapacity,
    const void *samplesBuffer, const size_t *samplesSizes, unsigned nbSamples,
    ZDICT_cover_params_t parameters)
{
  BYTE* const dict = (BYTE*)dictBuffer;
  COVER_ctx_t ctx;
  COVER_map_t activeDmers;
  parameters.splitPoint = 1.0;
  /* Initialize global data */
  g_displayLevel = parameters.zParams.notificationLevel;
  /* Checks */
  if (!COVER_checkParameters(parameters, dictBufferCapacity)) {
    DISPLAYLEVEL(1, "Cover parameters incorrect\n");
    return ERROR(GENERIC);
  }
  if (nbSamples == 0) {
    DISPLAYLEVEL(1, "Cover must have at least one input file\n");
    return ERROR(GENERIC);
  }
  if (dictBufferCapacity < ZDICT_DICTSIZE_MIN) {
    DISPLAYLEVEL(1, "dictBufferCapacity must be at least %u\n",
                 ZDICT_DICTSIZE_MIN);
    return ERROR(dstSize_tooSmall);
  }
  /* Initialize context and activeDmers */
  if (!COVER_ctx_init(&ctx, samplesBuffer, samplesSizes, nbSamples,
                      parameters.d, parameters.splitPoint)) {
    return ERROR(GENERIC);
  }
  if (!COVER_map_init(&activeDmers, parameters.k - parameters.d + 1)) {
    DISPLAYLEVEL(1, "Failed to allocate dmer map: out of memory\n");
    COVER_ctx_destroy(&ctx);
    return ERROR(GENERIC);
  }

  DISPLAYLEVEL(2, "Building dictionary\n");
  {
    const size_t tail =
        COVER_buildDictionary(&ctx, ctx.freqs, &activeDmers, dictBuffer,
                              dictBufferCapacity, parameters);
    const size_t dictionarySize = ZDICT_finalizeDictionary(
        dict, dictBufferCapacity, dict + tail, dictBufferCapacity - tail,
        samplesBuffer, samplesSizes, nbSamples, parameters.zParams);
    if (!ZSTD_isError(dictionarySize)) {
      DISPLAYLEVEL(2, "Constructed dictionary of size %u\n",
                   (unsigned)dictionarySize);
    }
    COVER_ctx_destroy(&ctx);
    COVER_map_destroy(&activeDmers);
    return dictionarySize;
  }
}



size_t COVER_checkTotalCompressedSize(const ZDICT_cover_params_t parameters,
                                    const size_t *samplesSizes, const BYTE *samples,
                                    size_t *offsets,
                                    size_t nbTrainSamples, size_t nbSamples,
                                    BYTE *const dict, size_t dictBufferCapacity) {
  size_t totalCompressedSize = ERROR(GENERIC);
  /* Pointers */
  ZSTD_CCtx *cctx;
  ZSTD_CDict *cdict;
  void *dst;
  /* Local variables */
  size_t dstCapacity;
  size_t i;
  /* Allocate dst with enough space to compress the maximum sized sample */
  {
    size_t maxSampleSize = 0;
    i = parameters.splitPoint < 1.0 ? nbTrainSamples : 0;
    for (; i < nbSamples; ++i) {
      maxSampleSize = MAX(samplesSizes[i], maxSampleSize);
    }
    dstCapacity = ZSTD_compressBound(maxSampleSize);
    dst = malloc(dstCapacity);
  }
  /* Create the cctx and cdict */
  cctx = ZSTD_createCCtx();
  cdict = ZSTD_createCDict(dict, dictBufferCapacity,
                           parameters.zParams.compressionLevel);
  if (!dst || !cctx || !cdict) {
    goto _compressCleanup;
  }
  /* Compress each sample and sum their sizes (or error) */
  totalCompressedSize = dictBufferCapacity;
  i = parameters.splitPoint < 1.0 ? nbTrainSamples : 0;
  for (; i < nbSamples; ++i) {
    const size_t size = ZSTD_compress_usingCDict(
        cctx, dst, dstCapacity, samples + offsets[i],
        samplesSizes[i], cdict);
    if (ZSTD_isError(size)) {
      totalCompressedSize = ERROR(GENERIC);
      goto _compressCleanup;
    }
    totalCompressedSize += size;
  }
_compressCleanup:
  ZSTD_freeCCtx(cctx);
  ZSTD_freeCDict(cdict);
  if (dst) {
    free(dst);
  }
  return totalCompressedSize;
}


/**
 * Initialize the `COVER_best_t`.
 */
void COVER_best_init(COVER_best_t *best) {
  if (best==NULL) return; /* compatible with init on NULL */
  (void)ZSTD_pthread_mutex_init(&best->mutex, NULL);
  (void)ZSTD_pthread_cond_init(&best->cond, NULL);
  best->liveJobs = 0;
  best->dict = NULL;
  best->dictSize = 0;
  best->compressedSize = (size_t)-1;
  memset(&best->parameters, 0, sizeof(best->parameters));
}

/**
 * Wait until liveJobs == 0.
 */
void COVER_best_wait(COVER_best_t *best) {
  if (!best) {
    return;
  }
  ZSTD_pthread_mutex_lock(&best->mutex);
  while (best->liveJobs != 0) {
    ZSTD_pthread_cond_wait(&best->cond, &best->mutex);
  }
  ZSTD_pthread_mutex_unlock(&best->mutex);
}

/**
 * Call COVER_best_wait() and then destroy the COVER_best_t.
 */
void COVER_best_destroy(COVER_best_t *best) {
  if (!best) {
    return;
  }
  COVER_best_wait(best);
  if (best->dict) {
    free(best->dict);
  }
  ZSTD_pthread_mutex_destroy(&best->mutex);
  ZSTD_pthread_cond_destroy(&best->cond);
}

/**
 * Called when a thread is about to be launched.
 * Increments liveJobs.
 */
void COVER_best_start(COVER_best_t *best) {
  if (!best) {
    return;
  }
  ZSTD_pthread_mutex_lock(&best->mutex);
  ++best->liveJobs;
  ZSTD_pthread_mutex_unlock(&best->mutex);
}

/**
 * Called when a thread finishes executing, both on error or success.
 * Decrements liveJobs and signals any waiting threads if liveJobs == 0.
 * If this dictionary is the best so far save it and its parameters.
 */
void COVER_best_finish(COVER_best_t *best, size_t compressedSize,
                              ZDICT_cover_params_t parameters, void *dict,
                              size_t dictSize) {
  if (!best) {
    return;
  }
  {
    size_t liveJobs;
    ZSTD_pthread_mutex_lock(&best->mutex);
    --best->liveJobs;
    liveJobs = best->liveJobs;
    /* If the new dictionary is better */
    if (compressedSize < best->compressedSize) {
      /* Allocate space if necessary */
      if (!best->dict || best->dictSize < dictSize) {
        if (best->dict) {
          free(best->dict);
        }
        best->dict = malloc(dictSize);
        if (!best->dict) {
          best->compressedSize = ERROR(GENERIC);
          best->dictSize = 0;
          ZSTD_pthread_cond_signal(&best->cond);
          ZSTD_pthread_mutex_unlock(&best->mutex);
          return;
        }
      }
      /* Save the dictionary, parameters, and size */
      memcpy(best->dict, dict, dictSize);
      best->dictSize = dictSize;
      best->parameters = parameters;
      best->compressedSize = compressedSize;
    }
    if (liveJobs == 0) {
      ZSTD_pthread_cond_broadcast(&best->cond);
    }
    ZSTD_pthread_mutex_unlock(&best->mutex);
  }
}

/**
 * Parameters for COVER_tryParameters().
 */
typedef struct COVER_tryParameters_data_s {
  const COVER_ctx_t *ctx;
  COVER_best_t *best;
  size_t dictBufferCapacity;
  ZDICT_cover_params_t parameters;
} COVER_tryParameters_data_t;

/**
 * Tries a set of parameters and updates the COVER_best_t with the results.
 * This function is thread safe if zstd is compiled with multithreaded support.
 * It takes its parameters as an *OWNING* opaque pointer to support threading.
 */
static void COVER_tryParameters(void *opaque) {
  /* Save parameters as local variables */
  COVER_tryParameters_data_t *const data = (COVER_tryParameters_data_t *)opaque;
  const COVER_ctx_t *const ctx = data->ctx;
  const ZDICT_cover_params_t parameters = data->parameters;
  size_t dictBufferCapacity = data->dictBufferCapacity;
  size_t totalCompressedSize = ERROR(GENERIC);
  /* Allocate space for hash table, dict, and freqs */
  COVER_map_t activeDmers;
  BYTE *const dict = (BYTE * const)malloc(dictBufferCapacity);
  U32 *freqs = (U32 *)malloc(ctx->suffixSize * sizeof(U32));
  if (!COVER_map_init(&activeDmers, parameters.k - parameters.d + 1)) {
    DISPLAYLEVEL(1, "Failed to allocate dmer map: out of memory\n");
    goto _cleanup;
  }
  if (!dict || !freqs) {
    DISPLAYLEVEL(1, "Failed to allocate buffers: out of memory\n");
    goto _cleanup;
  }
  /* Copy the frequencies because we need to modify them */
  memcpy(freqs, ctx->freqs, ctx->suffixSize * sizeof(U32));
  /* Build the dictionary */
  {
    const size_t tail = COVER_buildDictionary(ctx, freqs, &activeDmers, dict,
                                              dictBufferCapacity, parameters);
    dictBufferCapacity = ZDICT_finalizeDictionary(
        dict, dictBufferCapacity, dict + tail, dictBufferCapacity - tail,
        ctx->samples, ctx->samplesSizes, (unsigned)ctx->nbTrainSamples,
        parameters.zParams);
    if (ZDICT_isError(dictBufferCapacity)) {
      DISPLAYLEVEL(1, "Failed to finalize dictionary\n");
      goto _cleanup;
    }
  }
  /* Check total compressed size */
  totalCompressedSize = COVER_checkTotalCompressedSize(parameters, ctx->samplesSizes,
                                                       ctx->samples, ctx->offsets,
                                                       ctx->nbTrainSamples, ctx->nbSamples,
                                                       dict, dictBufferCapacity);

_cleanup:
  COVER_best_finish(data->best, totalCompressedSize, parameters, dict,
                    dictBufferCapacity);
  free(data);
  COVER_map_destroy(&activeDmers);
  if (dict) {
    free(dict);
  }
  if (freqs) {
    free(freqs);
  }
}

ZDICTLIB_API size_t ZDICT_optimizeTrainFromBuffer_cover(
    void *dictBuffer, size_t dictBufferCapacity, const void *samplesBuffer,
    const size_t *samplesSizes, unsigned nbSamples,
    ZDICT_cover_params_t *parameters) {
  /* constants */
  const unsigned nbThreads = parameters->nbThreads;
  const double splitPoint =
      parameters->splitPoint <= 0.0 ? DEFAULT_SPLITPOINT : parameters->splitPoint;
  const unsigned kMinD = parameters->d == 0 ? 6 : parameters->d;
  const unsigned kMaxD = parameters->d == 0 ? 8 : parameters->d;
  const unsigned kMinK = parameters->k == 0 ? 50 : parameters->k;
  const unsigned kMaxK = parameters->k == 0 ? 2000 : parameters->k;
  const unsigned kSteps = parameters->steps == 0 ? 40 : parameters->steps;
  const unsigned kStepSize = MAX((kMaxK - kMinK) / kSteps, 1);
  const unsigned kIterations =
      (1 + (kMaxD - kMinD) / 2) * (1 + (kMaxK - kMinK) / kStepSize);
  /* Local variables */
  const int displayLevel = parameters->zParams.notificationLevel;
  unsigned iteration = 1;
  unsigned d;
  unsigned k;
  COVER_best_t best;
  POOL_ctx *pool = NULL;

  /* Checks */
  if (splitPoint <= 0 || splitPoint > 1) {
    LOCALDISPLAYLEVEL(displayLevel, 1, "Incorrect parameters\n");
    return ERROR(GENERIC);
  }
  if (kMinK < kMaxD || kMaxK < kMinK) {
    LOCALDISPLAYLEVEL(displayLevel, 1, "Incorrect parameters\n");
    return ERROR(GENERIC);
  }
  if (nbSamples == 0) {
    DISPLAYLEVEL(1, "Cover must have at least one input file\n");
    return ERROR(GENERIC);
  }
  if (dictBufferCapacity < ZDICT_DICTSIZE_MIN) {
    DISPLAYLEVEL(1, "dictBufferCapacity must be at least %u\n",
                 ZDICT_DICTSIZE_MIN);
    return ERROR(dstSize_tooSmall);
  }
  if (nbThreads > 1) {
    pool = POOL_create(nbThreads, 1);
    if (!pool) {
      return ERROR(memory_allocation);
    }
  }
  /* Initialization */
  COVER_best_init(&best);
  /* Turn down global display level to clean up display at level 2 and below */
  g_displayLevel = displayLevel == 0 ? 0 : displayLevel - 1;
  /* Loop through d first because each new value needs a new context */
  LOCALDISPLAYLEVEL(displayLevel, 2, "Trying %u different sets of parameters\n",
                    kIterations);
  for (d = kMinD; d <= kMaxD; d += 2) {
    /* Initialize the context for this value of d */
    COVER_ctx_t ctx;
    LOCALDISPLAYLEVEL(displayLevel, 3, "d=%u\n", d);
    if (!COVER_ctx_init(&ctx, samplesBuffer, samplesSizes, nbSamples, d, splitPoint)) {
      LOCALDISPLAYLEVEL(displayLevel, 1, "Failed to initialize context\n");
      COVER_best_destroy(&best);
      POOL_free(pool);
      return ERROR(GENERIC);
    }
    /* Loop through k reusing the same context */
    for (k = kMinK; k <= kMaxK; k += kStepSize) {
      /* Prepare the arguments */
      COVER_tryParameters_data_t *data = (COVER_tryParameters_data_t *)malloc(
          sizeof(COVER_tryParameters_data_t));
      LOCALDISPLAYLEVEL(displayLevel, 3, "k=%u\n", k);
      if (!data) {
        LOCALDISPLAYLEVEL(displayLevel, 1, "Failed to allocate parameters\n");
        COVER_best_destroy(&best);
        COVER_ctx_destroy(&ctx);
        POOL_free(pool);
        return ERROR(GENERIC);
      }
      data->ctx = &ctx;
      data->best = &best;
      data->dictBufferCapacity = dictBufferCapacity;
      data->parameters = *parameters;
      data->parameters.k = k;
      data->parameters.d = d;
      data->parameters.splitPoint = splitPoint;
      data->parameters.steps = kSteps;
      data->parameters.zParams.notificationLevel = g_displayLevel;
      /* Check the parameters */
      if (!COVER_checkParameters(data->parameters, dictBufferCapacity)) {
        DISPLAYLEVEL(1, "Cover parameters incorrect\n");
        free(data);
        continue;
      }
      /* Call the function and pass ownership of data to it */
      COVER_best_start(&best);
      if (pool) {
        POOL_add(pool, &COVER_tryParameters, data);
      } else {
        COVER_tryParameters(data);
      }
      /* Print status */
      LOCALDISPLAYUPDATE(displayLevel, 2, "\r%u%%       ",
                         (unsigned)((iteration * 100) / kIterations));
      ++iteration;
    }
    COVER_best_wait(&best);
    COVER_ctx_destroy(&ctx);
  }
  LOCALDISPLAYLEVEL(displayLevel, 2, "\r%79s\r", "");
  /* Fill the output buffer and parameters with output of the best parameters */
  {
    const size_t dictSize = best.dictSize;
    if (ZSTD_isError(best.compressedSize)) {
      const size_t compressedSize = best.compressedSize;
      COVER_best_destroy(&best);
      POOL_free(pool);
      return compressedSize;
    }
    *parameters = best.parameters;
    memcpy(dictBuffer, best.dict, dictSize);
    COVER_best_destroy(&best);
    POOL_free(pool);
    return dictSize;
  }
}