huf_compress.c 32.0 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
/* ******************************************************************
   Huffman encoder, part of New Generation Entropy library
   Copyright (C) 2013-2016, Yann Collet.

   BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)

   Redistribution and use in source and binary forms, with or without
   modification, are permitted provided that the following conditions are
   met:

       * Redistributions of source code must retain the above copyright
   notice, this list of conditions and the following disclaimer.
       * Redistributions in binary form must reproduce the above
   copyright notice, this list of conditions and the following disclaimer
   in the documentation and/or other materials provided with the
   distribution.

   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

    You can contact the author at :
    - FSE+HUF source repository : https://github.com/Cyan4973/FiniteStateEntropy
    - Public forum : https://groups.google.com/forum/#!forum/lz4c
****************************************************************** */

/* **************************************************************
*  Compiler specifics
****************************************************************/
#ifdef _MSC_VER    /* Visual Studio */
#  pragma warning(disable : 4127)        /* disable: C4127: conditional expression is constant */
#endif


/* **************************************************************
*  Includes
****************************************************************/
#include <string.h>     /* memcpy, memset */
#include <stdio.h>      /* printf (debug) */
#include "compiler.h"
#include "bitstream.h"
#include "hist.h"
#define FSE_STATIC_LINKING_ONLY   /* FSE_optimalTableLog_internal */
#include "fse.h"        /* header compression */
#define HUF_STATIC_LINKING_ONLY
#include "huf.h"
#include "error_private.h"


/* **************************************************************
*  Error Management
****************************************************************/
#define HUF_isError ERR_isError
#define HUF_STATIC_ASSERT(c) DEBUG_STATIC_ASSERT(c)   /* use only *after* variable declarations */
#define CHECK_V_F(e, f) size_t const e = f; if (ERR_isError(e)) return e
#define CHECK_F(f)   { CHECK_V_F(_var_err__, f); }


/* **************************************************************
*  Utils
****************************************************************/
unsigned HUF_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue)
{
    return FSE_optimalTableLog_internal(maxTableLog, srcSize, maxSymbolValue, 1);
}


/* *******************************************************
*  HUF : Huffman block compression
*********************************************************/
/* HUF_compressWeights() :
 * Same as FSE_compress(), but dedicated to huff0's weights compression.
 * The use case needs much less stack memory.
 * Note : all elements within weightTable are supposed to be <= HUF_TABLELOG_MAX.
 */
#define MAX_FSE_TABLELOG_FOR_HUFF_HEADER 6
static size_t HUF_compressWeights (void* dst, size_t dstSize, const void* weightTable, size_t wtSize)
{
    BYTE* const ostart = (BYTE*) dst;
    BYTE* op = ostart;
    BYTE* const oend = ostart + dstSize;

    unsigned maxSymbolValue = HUF_TABLELOG_MAX;
    U32 tableLog = MAX_FSE_TABLELOG_FOR_HUFF_HEADER;

    FSE_CTable CTable[FSE_CTABLE_SIZE_U32(MAX_FSE_TABLELOG_FOR_HUFF_HEADER, HUF_TABLELOG_MAX)];
    BYTE scratchBuffer[1<<MAX_FSE_TABLELOG_FOR_HUFF_HEADER];

    unsigned count[HUF_TABLELOG_MAX+1];
    S16 norm[HUF_TABLELOG_MAX+1];

    /* init conditions */
    if (wtSize <= 1) return 0;  /* Not compressible */

    /* Scan input and build symbol stats */
    {   unsigned const maxCount = HIST_count_simple(count, &maxSymbolValue, weightTable, wtSize);   /* never fails */
        if (maxCount == wtSize) return 1;   /* only a single symbol in src : rle */
        if (maxCount == 1) return 0;        /* each symbol present maximum once => not compressible */
    }

    tableLog = FSE_optimalTableLog(tableLog, wtSize, maxSymbolValue);
    CHECK_F( FSE_normalizeCount(norm, tableLog, count, wtSize, maxSymbolValue) );

    /* Write table description header */
    {   CHECK_V_F(hSize, FSE_writeNCount(op, oend-op, norm, maxSymbolValue, tableLog) );
        op += hSize;
    }

    /* Compress */
    CHECK_F( FSE_buildCTable_wksp(CTable, norm, maxSymbolValue, tableLog, scratchBuffer, sizeof(scratchBuffer)) );
    {   CHECK_V_F(cSize, FSE_compress_usingCTable(op, oend - op, weightTable, wtSize, CTable) );
        if (cSize == 0) return 0;   /* not enough space for compressed data */
        op += cSize;
    }

    return op-ostart;
}


struct HUF_CElt_s {
  U16  val;
  BYTE nbBits;
};   /* typedef'd to HUF_CElt within "huf.h" */

/*! HUF_writeCTable() :
    `CTable` : Huffman tree to save, using huf representation.
    @return : size of saved CTable */
size_t HUF_writeCTable (void* dst, size_t maxDstSize,
                        const HUF_CElt* CTable, unsigned maxSymbolValue, unsigned huffLog)
{
    BYTE bitsToWeight[HUF_TABLELOG_MAX + 1];   /* precomputed conversion table */
    BYTE huffWeight[HUF_SYMBOLVALUE_MAX];
    BYTE* op = (BYTE*)dst;
    U32 n;

     /* check conditions */
    if (maxSymbolValue > HUF_SYMBOLVALUE_MAX) return ERROR(maxSymbolValue_tooLarge);

    /* convert to weight */
    bitsToWeight[0] = 0;
    for (n=1; n<huffLog+1; n++)
        bitsToWeight[n] = (BYTE)(huffLog + 1 - n);
    for (n=0; n<maxSymbolValue; n++)
        huffWeight[n] = bitsToWeight[CTable[n].nbBits];

    /* attempt weights compression by FSE */
    {   CHECK_V_F(hSize, HUF_compressWeights(op+1, maxDstSize-1, huffWeight, maxSymbolValue) );
        if ((hSize>1) & (hSize < maxSymbolValue/2)) {   /* FSE compressed */
            op[0] = (BYTE)hSize;
            return hSize+1;
    }   }

    /* write raw values as 4-bits (max : 15) */
    if (maxSymbolValue > (256-128)) return ERROR(GENERIC);   /* should not happen : likely means source cannot be compressed */
    if (((maxSymbolValue+1)/2) + 1 > maxDstSize) return ERROR(dstSize_tooSmall);   /* not enough space within dst buffer */
    op[0] = (BYTE)(128 /*special case*/ + (maxSymbolValue-1));
    huffWeight[maxSymbolValue] = 0;   /* to be sure it doesn't cause msan issue in final combination */
    for (n=0; n<maxSymbolValue; n+=2)
        op[(n/2)+1] = (BYTE)((huffWeight[n] << 4) + huffWeight[n+1]);
    return ((maxSymbolValue+1)/2) + 1;
}


size_t HUF_readCTable (HUF_CElt* CTable, unsigned* maxSymbolValuePtr, const void* src, size_t srcSize)
{
    BYTE huffWeight[HUF_SYMBOLVALUE_MAX + 1];   /* init not required, even though some static analyzer may complain */
    U32 rankVal[HUF_TABLELOG_ABSOLUTEMAX + 1];   /* large enough for values from 0 to 16 */
    U32 tableLog = 0;
    U32 nbSymbols = 0;

    /* get symbol weights */
    CHECK_V_F(readSize, HUF_readStats(huffWeight, HUF_SYMBOLVALUE_MAX+1, rankVal, &nbSymbols, &tableLog, src, srcSize));

    /* check result */
    if (tableLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge);
    if (nbSymbols > *maxSymbolValuePtr+1) return ERROR(maxSymbolValue_tooSmall);

    /* Prepare base value per rank */
    {   U32 n, nextRankStart = 0;
        for (n=1; n<=tableLog; n++) {
            U32 current = nextRankStart;
            nextRankStart += (rankVal[n] << (n-1));
            rankVal[n] = current;
    }   }

    /* fill nbBits */
    {   U32 n; for (n=0; n<nbSymbols; n++) {
            const U32 w = huffWeight[n];
            CTable[n].nbBits = (BYTE)(tableLog + 1 - w);
    }   }

    /* fill val */
    {   U16 nbPerRank[HUF_TABLELOG_MAX+2]  = {0};  /* support w=0=>n=tableLog+1 */
        U16 valPerRank[HUF_TABLELOG_MAX+2] = {0};
        { U32 n; for (n=0; n<nbSymbols; n++) nbPerRank[CTable[n].nbBits]++; }
        /* determine stating value per rank */
        valPerRank[tableLog+1] = 0;   /* for w==0 */
        {   U16 min = 0;
            U32 n; for (n=tableLog; n>0; n--) {  /* start at n=tablelog <-> w=1 */
                valPerRank[n] = min;     /* get starting value within each rank */
                min += nbPerRank[n];
                min >>= 1;
        }   }
        /* assign value within rank, symbol order */
        { U32 n; for (n=0; n<nbSymbols; n++) CTable[n].val = valPerRank[CTable[n].nbBits]++; }
    }

    *maxSymbolValuePtr = nbSymbols - 1;
    return readSize;
}

U32 HUF_getNbBits(const void* symbolTable, U32 symbolValue)
{
    const HUF_CElt* table = (const HUF_CElt*)symbolTable;
    assert(symbolValue <= HUF_SYMBOLVALUE_MAX);
    return table[symbolValue].nbBits;
}


typedef struct nodeElt_s {
    U32 count;
    U16 parent;
    BYTE byte;
    BYTE nbBits;
} nodeElt;

static U32 HUF_setMaxHeight(nodeElt* huffNode, U32 lastNonNull, U32 maxNbBits)
{
    const U32 largestBits = huffNode[lastNonNull].nbBits;
    if (largestBits <= maxNbBits) return largestBits;   /* early exit : no elt > maxNbBits */

    /* there are several too large elements (at least >= 2) */
    {   int totalCost = 0;
        const U32 baseCost = 1 << (largestBits - maxNbBits);
        U32 n = lastNonNull;

        while (huffNode[n].nbBits > maxNbBits) {
            totalCost += baseCost - (1 << (largestBits - huffNode[n].nbBits));
            huffNode[n].nbBits = (BYTE)maxNbBits;
            n --;
        }  /* n stops at huffNode[n].nbBits <= maxNbBits */
        while (huffNode[n].nbBits == maxNbBits) n--;   /* n end at index of smallest symbol using < maxNbBits */

        /* renorm totalCost */
        totalCost >>= (largestBits - maxNbBits);  /* note : totalCost is necessarily a multiple of baseCost */

        /* repay normalized cost */
        {   U32 const noSymbol = 0xF0F0F0F0;
            U32 rankLast[HUF_TABLELOG_MAX+2];
            int pos;

            /* Get pos of last (smallest) symbol per rank */
            memset(rankLast, 0xF0, sizeof(rankLast));
            {   U32 currentNbBits = maxNbBits;
                for (pos=n ; pos >= 0; pos--) {
                    if (huffNode[pos].nbBits >= currentNbBits) continue;
                    currentNbBits = huffNode[pos].nbBits;   /* < maxNbBits */
                    rankLast[maxNbBits-currentNbBits] = pos;
            }   }

            while (totalCost > 0) {
                U32 nBitsToDecrease = BIT_highbit32(totalCost) + 1;
                for ( ; nBitsToDecrease > 1; nBitsToDecrease--) {
                    U32 highPos = rankLast[nBitsToDecrease];
                    U32 lowPos = rankLast[nBitsToDecrease-1];
                    if (highPos == noSymbol) continue;
                    if (lowPos == noSymbol) break;
                    {   U32 const highTotal = huffNode[highPos].count;
                        U32 const lowTotal = 2 * huffNode[lowPos].count;
                        if (highTotal <= lowTotal) break;
                }   }
                /* only triggered when no more rank 1 symbol left => find closest one (note : there is necessarily at least one !) */
                /* HUF_MAX_TABLELOG test just to please gcc 5+; but it should not be necessary */
                while ((nBitsToDecrease<=HUF_TABLELOG_MAX) && (rankLast[nBitsToDecrease] == noSymbol))
                    nBitsToDecrease ++;
                totalCost -= 1 << (nBitsToDecrease-1);
                if (rankLast[nBitsToDecrease-1] == noSymbol)
                    rankLast[nBitsToDecrease-1] = rankLast[nBitsToDecrease];   /* this rank is no longer empty */
                huffNode[rankLast[nBitsToDecrease]].nbBits ++;
                if (rankLast[nBitsToDecrease] == 0)    /* special case, reached largest symbol */
                    rankLast[nBitsToDecrease] = noSymbol;
                else {
                    rankLast[nBitsToDecrease]--;
                    if (huffNode[rankLast[nBitsToDecrease]].nbBits != maxNbBits-nBitsToDecrease)
                        rankLast[nBitsToDecrease] = noSymbol;   /* this rank is now empty */
            }   }   /* while (totalCost > 0) */

            while (totalCost < 0) {  /* Sometimes, cost correction overshoot */
                if (rankLast[1] == noSymbol) {  /* special case : no rank 1 symbol (using maxNbBits-1); let's create one from largest rank 0 (using maxNbBits) */
                    while (huffNode[n].nbBits == maxNbBits) n--;
                    huffNode[n+1].nbBits--;
                    rankLast[1] = n+1;
                    totalCost++;
                    continue;
                }
                huffNode[ rankLast[1] + 1 ].nbBits--;
                rankLast[1]++;
                totalCost ++;
    }   }   }   /* there are several too large elements (at least >= 2) */

    return maxNbBits;
}


typedef struct {
    U32 base;
    U32 current;
} rankPos;

static void HUF_sort(nodeElt* huffNode, const unsigned* count, U32 maxSymbolValue)
{
    rankPos rank[32];
    U32 n;

    memset(rank, 0, sizeof(rank));
    for (n=0; n<=maxSymbolValue; n++) {
        U32 r = BIT_highbit32(count[n] + 1);
        rank[r].base ++;
    }
    for (n=30; n>0; n--) rank[n-1].base += rank[n].base;
    for (n=0; n<32; n++) rank[n].current = rank[n].base;
    for (n=0; n<=maxSymbolValue; n++) {
        U32 const c = count[n];
        U32 const r = BIT_highbit32(c+1) + 1;
        U32 pos = rank[r].current++;
        while ((pos > rank[r].base) && (c > huffNode[pos-1].count)) {
            huffNode[pos] = huffNode[pos-1];
            pos--;
        }
        huffNode[pos].count = c;
        huffNode[pos].byte  = (BYTE)n;
    }
}


/** HUF_buildCTable_wksp() :
 *  Same as HUF_buildCTable(), but using externally allocated scratch buffer.
 *  `workSpace` must be aligned on 4-bytes boundaries, and be at least as large as a table of HUF_CTABLE_WORKSPACE_SIZE_U32 unsigned.
 */
#define STARTNODE (HUF_SYMBOLVALUE_MAX+1)
typedef nodeElt huffNodeTable[HUF_CTABLE_WORKSPACE_SIZE_U32];
size_t HUF_buildCTable_wksp (HUF_CElt* tree, const unsigned* count, U32 maxSymbolValue, U32 maxNbBits, void* workSpace, size_t wkspSize)
{
    nodeElt* const huffNode0 = (nodeElt*)workSpace;
    nodeElt* const huffNode = huffNode0+1;
    U32 n, nonNullRank;
    int lowS, lowN;
    U16 nodeNb = STARTNODE;
    U32 nodeRoot;

    /* safety checks */
    if (((size_t)workSpace & 3) != 0) return ERROR(GENERIC);  /* must be aligned on 4-bytes boundaries */
    if (wkspSize < sizeof(huffNodeTable)) return ERROR(workSpace_tooSmall);
    if (maxNbBits == 0) maxNbBits = HUF_TABLELOG_DEFAULT;
    if (maxSymbolValue > HUF_SYMBOLVALUE_MAX) return ERROR(maxSymbolValue_tooLarge);
    memset(huffNode0, 0, sizeof(huffNodeTable));

    /* sort, decreasing order */
    HUF_sort(huffNode, count, maxSymbolValue);

    /* init for parents */
    nonNullRank = maxSymbolValue;
    while(huffNode[nonNullRank].count == 0) nonNullRank--;
    lowS = nonNullRank; nodeRoot = nodeNb + lowS - 1; lowN = nodeNb;
    huffNode[nodeNb].count = huffNode[lowS].count + huffNode[lowS-1].count;
    huffNode[lowS].parent = huffNode[lowS-1].parent = nodeNb;
    nodeNb++; lowS-=2;
    for (n=nodeNb; n<=nodeRoot; n++) huffNode[n].count = (U32)(1U<<30);
    huffNode0[0].count = (U32)(1U<<31);  /* fake entry, strong barrier */

    /* create parents */
    while (nodeNb <= nodeRoot) {
        U32 n1 = (huffNode[lowS].count < huffNode[lowN].count) ? lowS-- : lowN++;
        U32 n2 = (huffNode[lowS].count < huffNode[lowN].count) ? lowS-- : lowN++;
        huffNode[nodeNb].count = huffNode[n1].count + huffNode[n2].count;
        huffNode[n1].parent = huffNode[n2].parent = nodeNb;
        nodeNb++;
    }

    /* distribute weights (unlimited tree height) */
    huffNode[nodeRoot].nbBits = 0;
    for (n=nodeRoot-1; n>=STARTNODE; n--)
        huffNode[n].nbBits = huffNode[ huffNode[n].parent ].nbBits + 1;
    for (n=0; n<=nonNullRank; n++)
        huffNode[n].nbBits = huffNode[ huffNode[n].parent ].nbBits + 1;

    /* enforce maxTableLog */
    maxNbBits = HUF_setMaxHeight(huffNode, nonNullRank, maxNbBits);

    /* fill result into tree (val, nbBits) */
    {   U16 nbPerRank[HUF_TABLELOG_MAX+1] = {0};
        U16 valPerRank[HUF_TABLELOG_MAX+1] = {0};
        if (maxNbBits > HUF_TABLELOG_MAX) return ERROR(GENERIC);   /* check fit into table */
        for (n=0; n<=nonNullRank; n++)
            nbPerRank[huffNode[n].nbBits]++;
        /* determine stating value per rank */
        {   U16 min = 0;
            for (n=maxNbBits; n>0; n--) {
                valPerRank[n] = min;      /* get starting value within each rank */
                min += nbPerRank[n];
                min >>= 1;
        }   }
        for (n=0; n<=maxSymbolValue; n++)
            tree[huffNode[n].byte].nbBits = huffNode[n].nbBits;   /* push nbBits per symbol, symbol order */
        for (n=0; n<=maxSymbolValue; n++)
            tree[n].val = valPerRank[tree[n].nbBits]++;   /* assign value within rank, symbol order */
    }

    return maxNbBits;
}

/** HUF_buildCTable() :
 * @return : maxNbBits
 *  Note : count is used before tree is written, so they can safely overlap
 */
size_t HUF_buildCTable (HUF_CElt* tree, const unsigned* count, unsigned maxSymbolValue, unsigned maxNbBits)
{
    huffNodeTable nodeTable;
    return HUF_buildCTable_wksp(tree, count, maxSymbolValue, maxNbBits, nodeTable, sizeof(nodeTable));
}

static size_t HUF_estimateCompressedSize(HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue)
{
    size_t nbBits = 0;
    int s;
    for (s = 0; s <= (int)maxSymbolValue; ++s) {
        nbBits += CTable[s].nbBits * count[s];
    }
    return nbBits >> 3;
}

static int HUF_validateCTable(const HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue) {
  int bad = 0;
  int s;
  for (s = 0; s <= (int)maxSymbolValue; ++s) {
    bad |= (count[s] != 0) & (CTable[s].nbBits == 0);
  }
  return !bad;
}

size_t HUF_compressBound(size_t size) { return HUF_COMPRESSBOUND(size); }

FORCE_INLINE_TEMPLATE void
HUF_encodeSymbol(BIT_CStream_t* bitCPtr, U32 symbol, const HUF_CElt* CTable)
{
    BIT_addBitsFast(bitCPtr, CTable[symbol].val, CTable[symbol].nbBits);
}

#define HUF_FLUSHBITS(s)  BIT_flushBits(s)

#define HUF_FLUSHBITS_1(stream) \
    if (sizeof((stream)->bitContainer)*8 < HUF_TABLELOG_MAX*2+7) HUF_FLUSHBITS(stream)

#define HUF_FLUSHBITS_2(stream) \
    if (sizeof((stream)->bitContainer)*8 < HUF_TABLELOG_MAX*4+7) HUF_FLUSHBITS(stream)

FORCE_INLINE_TEMPLATE size_t
HUF_compress1X_usingCTable_internal_body(void* dst, size_t dstSize,
                                   const void* src, size_t srcSize,
                                   const HUF_CElt* CTable)
{
    const BYTE* ip = (const BYTE*) src;
    BYTE* const ostart = (BYTE*)dst;
    BYTE* const oend = ostart + dstSize;
    BYTE* op = ostart;
    size_t n;
    BIT_CStream_t bitC;

    /* init */
    if (dstSize < 8) return 0;   /* not enough space to compress */
    { size_t const initErr = BIT_initCStream(&bitC, op, oend-op);
      if (HUF_isError(initErr)) return 0; }

    n = srcSize & ~3;  /* join to mod 4 */
    switch (srcSize & 3)
    {
        case 3 : HUF_encodeSymbol(&bitC, ip[n+ 2], CTable);
                 HUF_FLUSHBITS_2(&bitC);
		 /* fall-through */
        case 2 : HUF_encodeSymbol(&bitC, ip[n+ 1], CTable);
                 HUF_FLUSHBITS_1(&bitC);
		 /* fall-through */
        case 1 : HUF_encodeSymbol(&bitC, ip[n+ 0], CTable);
                 HUF_FLUSHBITS(&bitC);
		 /* fall-through */
        case 0 : /* fall-through */
        default: break;
    }

    for (; n>0; n-=4) {  /* note : n&3==0 at this stage */
        HUF_encodeSymbol(&bitC, ip[n- 1], CTable);
        HUF_FLUSHBITS_1(&bitC);
        HUF_encodeSymbol(&bitC, ip[n- 2], CTable);
        HUF_FLUSHBITS_2(&bitC);
        HUF_encodeSymbol(&bitC, ip[n- 3], CTable);
        HUF_FLUSHBITS_1(&bitC);
        HUF_encodeSymbol(&bitC, ip[n- 4], CTable);
        HUF_FLUSHBITS(&bitC);
    }

    return BIT_closeCStream(&bitC);
}

#if DYNAMIC_BMI2

static TARGET_ATTRIBUTE("bmi2") size_t
HUF_compress1X_usingCTable_internal_bmi2(void* dst, size_t dstSize,
                                   const void* src, size_t srcSize,
                                   const HUF_CElt* CTable)
{
    return HUF_compress1X_usingCTable_internal_body(dst, dstSize, src, srcSize, CTable);
}

static size_t
HUF_compress1X_usingCTable_internal_default(void* dst, size_t dstSize,
                                      const void* src, size_t srcSize,
                                      const HUF_CElt* CTable)
{
    return HUF_compress1X_usingCTable_internal_body(dst, dstSize, src, srcSize, CTable);
}

static size_t
HUF_compress1X_usingCTable_internal(void* dst, size_t dstSize,
                              const void* src, size_t srcSize,
                              const HUF_CElt* CTable, const int bmi2)
{
    if (bmi2) {
        return HUF_compress1X_usingCTable_internal_bmi2(dst, dstSize, src, srcSize, CTable);
    }
    return HUF_compress1X_usingCTable_internal_default(dst, dstSize, src, srcSize, CTable);
}

#else

static size_t
HUF_compress1X_usingCTable_internal(void* dst, size_t dstSize,
                              const void* src, size_t srcSize,
                              const HUF_CElt* CTable, const int bmi2)
{
    (void)bmi2;
    return HUF_compress1X_usingCTable_internal_body(dst, dstSize, src, srcSize, CTable);
}

#endif

size_t HUF_compress1X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable)
{
    return HUF_compress1X_usingCTable_internal(dst, dstSize, src, srcSize, CTable, /* bmi2 */ 0);
}


static size_t
HUF_compress4X_usingCTable_internal(void* dst, size_t dstSize,
                              const void* src, size_t srcSize,
                              const HUF_CElt* CTable, int bmi2)
{
    size_t const segmentSize = (srcSize+3)/4;   /* first 3 segments */
    const BYTE* ip = (const BYTE*) src;
    const BYTE* const iend = ip + srcSize;
    BYTE* const ostart = (BYTE*) dst;
    BYTE* const oend = ostart + dstSize;
    BYTE* op = ostart;

    if (dstSize < 6 + 1 + 1 + 1 + 8) return 0;   /* minimum space to compress successfully */
    if (srcSize < 12) return 0;   /* no saving possible : too small input */
    op += 6;   /* jumpTable */

    {   CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, oend-op, ip, segmentSize, CTable, bmi2) );
        if (cSize==0) return 0;
        assert(cSize <= 65535);
        MEM_writeLE16(ostart, (U16)cSize);
        op += cSize;
    }

    ip += segmentSize;
    {   CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, oend-op, ip, segmentSize, CTable, bmi2) );
        if (cSize==0) return 0;
        assert(cSize <= 65535);
        MEM_writeLE16(ostart+2, (U16)cSize);
        op += cSize;
    }

    ip += segmentSize;
    {   CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, oend-op, ip, segmentSize, CTable, bmi2) );
        if (cSize==0) return 0;
        assert(cSize <= 65535);
        MEM_writeLE16(ostart+4, (U16)cSize);
        op += cSize;
    }

    ip += segmentSize;
    {   CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, oend-op, ip, iend-ip, CTable, bmi2) );
        if (cSize==0) return 0;
        op += cSize;
    }

    return op-ostart;
}

size_t HUF_compress4X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable)
{
    return HUF_compress4X_usingCTable_internal(dst, dstSize, src, srcSize, CTable, /* bmi2 */ 0);
}

typedef enum { HUF_singleStream, HUF_fourStreams } HUF_nbStreams_e;

static size_t HUF_compressCTable_internal(
                BYTE* const ostart, BYTE* op, BYTE* const oend,
                const void* src, size_t srcSize,
                HUF_nbStreams_e nbStreams, const HUF_CElt* CTable, const int bmi2)
{
    size_t const cSize = (nbStreams==HUF_singleStream) ?
                         HUF_compress1X_usingCTable_internal(op, oend - op, src, srcSize, CTable, bmi2) :
                         HUF_compress4X_usingCTable_internal(op, oend - op, src, srcSize, CTable, bmi2);
    if (HUF_isError(cSize)) { return cSize; }
    if (cSize==0) { return 0; }   /* uncompressible */
    op += cSize;
    /* check compressibility */
    if ((size_t)(op-ostart) >= srcSize-1) { return 0; }
    return op-ostart;
}

typedef struct {
    unsigned count[HUF_SYMBOLVALUE_MAX + 1];
    HUF_CElt CTable[HUF_SYMBOLVALUE_MAX + 1];
    huffNodeTable nodeTable;
} HUF_compress_tables_t;

/* HUF_compress_internal() :
 * `workSpace` must a table of at least HUF_WORKSPACE_SIZE_U32 unsigned */
static size_t
HUF_compress_internal (void* dst, size_t dstSize,
                 const void* src, size_t srcSize,
                       unsigned maxSymbolValue, unsigned huffLog,
                       HUF_nbStreams_e nbStreams,
                       void* workSpace, size_t wkspSize,
                       HUF_CElt* oldHufTable, HUF_repeat* repeat, int preferRepeat,
                 const int bmi2)
{
    HUF_compress_tables_t* const table = (HUF_compress_tables_t*)workSpace;
    BYTE* const ostart = (BYTE*)dst;
    BYTE* const oend = ostart + dstSize;
    BYTE* op = ostart;

    /* checks & inits */
    if (((size_t)workSpace & 3) != 0) return ERROR(GENERIC);  /* must be aligned on 4-bytes boundaries */
    if (wkspSize < HUF_WORKSPACE_SIZE) return ERROR(workSpace_tooSmall);
    if (!srcSize) return 0;  /* Uncompressed */
    if (!dstSize) return 0;  /* cannot fit anything within dst budget */
    if (srcSize > HUF_BLOCKSIZE_MAX) return ERROR(srcSize_wrong);   /* current block size limit */
    if (huffLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge);
    if (maxSymbolValue > HUF_SYMBOLVALUE_MAX) return ERROR(maxSymbolValue_tooLarge);
    if (!maxSymbolValue) maxSymbolValue = HUF_SYMBOLVALUE_MAX;
    if (!huffLog) huffLog = HUF_TABLELOG_DEFAULT;

    /* Heuristic : If old table is valid, use it for small inputs */
    if (preferRepeat && repeat && *repeat == HUF_repeat_valid) {
        return HUF_compressCTable_internal(ostart, op, oend,
                                           src, srcSize,
                                           nbStreams, oldHufTable, bmi2);
    }

    /* Scan input and build symbol stats */
    {   CHECK_V_F(largest, HIST_count_wksp (table->count, &maxSymbolValue, (const BYTE*)src, srcSize, workSpace, wkspSize) );
        if (largest == srcSize) { *ostart = ((const BYTE*)src)[0]; return 1; }   /* single symbol, rle */
        if (largest <= (srcSize >> 7)+4) return 0;   /* heuristic : probably not compressible enough */
    }

    /* Check validity of previous table */
    if ( repeat
      && *repeat == HUF_repeat_check
      && !HUF_validateCTable(oldHufTable, table->count, maxSymbolValue)) {
        *repeat = HUF_repeat_none;
    }
    /* Heuristic : use existing table for small inputs */
    if (preferRepeat && repeat && *repeat != HUF_repeat_none) {
        return HUF_compressCTable_internal(ostart, op, oend,
                                           src, srcSize,
                                           nbStreams, oldHufTable, bmi2);
    }

    /* Build Huffman Tree */
    huffLog = HUF_optimalTableLog(huffLog, srcSize, maxSymbolValue);
    {   size_t const maxBits = HUF_buildCTable_wksp(table->CTable, table->count,
                                            maxSymbolValue, huffLog,
                                            table->nodeTable, sizeof(table->nodeTable));
        CHECK_F(maxBits);
        huffLog = (U32)maxBits;
        /* Zero unused symbols in CTable, so we can check it for validity */
        memset(table->CTable + (maxSymbolValue + 1), 0,
               sizeof(table->CTable) - ((maxSymbolValue + 1) * sizeof(HUF_CElt)));
    }

    /* Write table description header */
    {   CHECK_V_F(hSize, HUF_writeCTable (op, dstSize, table->CTable, maxSymbolValue, huffLog) );
        /* Check if using previous huffman table is beneficial */
        if (repeat && *repeat != HUF_repeat_none) {
            size_t const oldSize = HUF_estimateCompressedSize(oldHufTable, table->count, maxSymbolValue);
            size_t const newSize = HUF_estimateCompressedSize(table->CTable, table->count, maxSymbolValue);
            if (oldSize <= hSize + newSize || hSize + 12 >= srcSize) {
                return HUF_compressCTable_internal(ostart, op, oend,
                                                   src, srcSize,
                                                   nbStreams, oldHufTable, bmi2);
        }   }

        /* Use the new huffman table */
        if (hSize + 12ul >= srcSize) { return 0; }
        op += hSize;
        if (repeat) { *repeat = HUF_repeat_none; }
        if (oldHufTable)
            memcpy(oldHufTable, table->CTable, sizeof(table->CTable));  /* Save new table */
    }
    return HUF_compressCTable_internal(ostart, op, oend,
                                       src, srcSize,
                                       nbStreams, table->CTable, bmi2);
}


size_t HUF_compress1X_wksp (void* dst, size_t dstSize,
                      const void* src, size_t srcSize,
                      unsigned maxSymbolValue, unsigned huffLog,
                      void* workSpace, size_t wkspSize)
{
    return HUF_compress_internal(dst, dstSize, src, srcSize,
                                 maxSymbolValue, huffLog, HUF_singleStream,
                                 workSpace, wkspSize,
                                 NULL, NULL, 0, 0 /*bmi2*/);
}

size_t HUF_compress1X_repeat (void* dst, size_t dstSize,
                      const void* src, size_t srcSize,
                      unsigned maxSymbolValue, unsigned huffLog,
                      void* workSpace, size_t wkspSize,
                      HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat, int bmi2)
{
    return HUF_compress_internal(dst, dstSize, src, srcSize,
                                 maxSymbolValue, huffLog, HUF_singleStream,
                                 workSpace, wkspSize, hufTable,
                                 repeat, preferRepeat, bmi2);
}

size_t HUF_compress1X (void* dst, size_t dstSize,
                 const void* src, size_t srcSize,
                 unsigned maxSymbolValue, unsigned huffLog)
{
    unsigned workSpace[HUF_WORKSPACE_SIZE_U32];
    return HUF_compress1X_wksp(dst, dstSize, src, srcSize, maxSymbolValue, huffLog, workSpace, sizeof(workSpace));
}

/* HUF_compress4X_repeat():
 * compress input using 4 streams.
 * provide workspace to generate compression tables */
size_t HUF_compress4X_wksp (void* dst, size_t dstSize,
                      const void* src, size_t srcSize,
                      unsigned maxSymbolValue, unsigned huffLog,
                      void* workSpace, size_t wkspSize)
{
    return HUF_compress_internal(dst, dstSize, src, srcSize,
                                 maxSymbolValue, huffLog, HUF_fourStreams,
                                 workSpace, wkspSize,
                                 NULL, NULL, 0, 0 /*bmi2*/);
}

/* HUF_compress4X_repeat():
 * compress input using 4 streams.
 * re-use an existing huffman compression table */
size_t HUF_compress4X_repeat (void* dst, size_t dstSize,
                      const void* src, size_t srcSize,
                      unsigned maxSymbolValue, unsigned huffLog,
                      void* workSpace, size_t wkspSize,
                      HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat, int bmi2)
{
    return HUF_compress_internal(dst, dstSize, src, srcSize,
                                 maxSymbolValue, huffLog, HUF_fourStreams,
                                 workSpace, wkspSize,
                                 hufTable, repeat, preferRepeat, bmi2);
}

size_t HUF_compress2 (void* dst, size_t dstSize,
                const void* src, size_t srcSize,
                unsigned maxSymbolValue, unsigned huffLog)
{
    unsigned workSpace[HUF_WORKSPACE_SIZE_U32];
    return HUF_compress4X_wksp(dst, dstSize, src, srcSize, maxSymbolValue, huffLog, workSpace, sizeof(workSpace));
}

size_t HUF_compress (void* dst, size_t maxDstSize, const void* src, size_t srcSize)
{
    return HUF_compress2(dst, maxDstSize, src, srcSize, 255, HUF_TABLELOG_DEFAULT);
}