crypt.go 21.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
// Copyright 2016 - 2020 The excelize Authors. All rights reserved. Use of
// this source code is governed by a BSD-style license that can be found in
// the LICENSE file.
//
// Package excelize providing a set of functions that allow you to write to
// and read from XLSX files. Support reads and writes XLSX file generated by
// Microsoft Excel™ 2007 and later. Support save file without losing original
// charts of XLSX. This library needs Go version 1.10 or later.

package excelize

import (
	"bytes"
	"crypto/aes"
	"crypto/cipher"
	"crypto/hmac"
	"crypto/md5"
	"crypto/sha1"
	"crypto/sha256"
	"crypto/sha512"
	"encoding/base64"
	"encoding/binary"
	"encoding/xml"
	"errors"
	"hash"
	"math/rand"
	"reflect"
	"strings"

	"github.com/richardlehane/mscfb"
	"golang.org/x/crypto/md4"
	"golang.org/x/crypto/ripemd160"
	"golang.org/x/text/encoding/unicode"
)

var (
	blockKey                   = []byte{0x14, 0x6e, 0x0b, 0xe7, 0xab, 0xac, 0xd0, 0xd6} // Block keys used for encryption
	blockKeyHmacKey            = []byte{0x5f, 0xb2, 0xad, 0x01, 0x0c, 0xb9, 0xe1, 0xf6}
	blockKeyHmacValue          = []byte{0xa0, 0x67, 0x7f, 0x02, 0xb2, 0x2c, 0x84, 0x33}
	blockKeyVerifierHashInput  = []byte{0xfe, 0xa7, 0xd2, 0x76, 0x3b, 0x4b, 0x9e, 0x79}
	blockKeyVerifierHashValue  = []byte{0xd7, 0xaa, 0x0f, 0x6d, 0x30, 0x61, 0x34, 0x4e}
	packageOffset              = 8 // First 8 bytes are the size of the stream
	packageEncryptionChunkSize = 4096
	iterCount                  = 50000
	cryptoIdentifier           = []byte{ // checking protect workbook by [MS-OFFCRYPTO] - v20181211 3.1 FeatureIdentifier
		0x3c, 0x00, 0x00, 0x00, 0x4d, 0x00, 0x69, 0x00, 0x63, 0x00, 0x72, 0x00, 0x6f, 0x00, 0x73, 0x00,
		0x6f, 0x00, 0x66, 0x00, 0x74, 0x00, 0x2e, 0x00, 0x43, 0x00, 0x6f, 0x00, 0x6e, 0x00, 0x74, 0x00,
		0x61, 0x00, 0x69, 0x00, 0x6e, 0x00, 0x65, 0x00, 0x72, 0x00, 0x2e, 0x00, 0x44, 0x00, 0x61, 0x00,
		0x74, 0x00, 0x61, 0x00, 0x53, 0x00, 0x70, 0x00, 0x61, 0x00, 0x63, 0x00, 0x65, 0x00, 0x73, 0x00,
		0x01, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
	}
	oleIdentifier = []byte{
		0xd0, 0xcf, 0x11, 0xe0, 0xa1, 0xb1, 0x1a, 0xe1,
	}
)

// Encryption specifies the encryption structure, streams, and storages are
// required when encrypting ECMA-376 documents.
type Encryption struct {
	XMLName       xml.Name      `xml:"encryption"`
	KeyData       KeyData       `xml:"keyData"`
	DataIntegrity DataIntegrity `xml:"dataIntegrity"`
	KeyEncryptors KeyEncryptors `xml:"keyEncryptors"`
}

// KeyData specifies the cryptographic attributes used to encrypt the data.
type KeyData struct {
	SaltSize        int    `xml:"saltSize,attr"`
	BlockSize       int    `xml:"blockSize,attr"`
	KeyBits         int    `xml:"keyBits,attr"`
	HashSize        int    `xml:"hashSize,attr"`
	CipherAlgorithm string `xml:"cipherAlgorithm,attr"`
	CipherChaining  string `xml:"cipherChaining,attr"`
	HashAlgorithm   string `xml:"hashAlgorithm,attr"`
	SaltValue       string `xml:"saltValue,attr"`
}

// DataIntegrity specifies the encrypted copies of the salt and hash values
// used to help ensure that the integrity of the encrypted data has not been
// compromised.
type DataIntegrity struct {
	EncryptedHmacKey   string `xml:"encryptedHmacKey,attr"`
	EncryptedHmacValue string `xml:"encryptedHmacValue,attr"`
}

// KeyEncryptors specifies the key encryptors used to encrypt the data.
type KeyEncryptors struct {
	KeyEncryptor []KeyEncryptor `xml:"keyEncryptor"`
}

// KeyEncryptor specifies that the schema used by this encryptor is the schema
// specified for password-based encryptors.
type KeyEncryptor struct {
	XMLName      xml.Name     `xml:"keyEncryptor"`
	URI          string       `xml:"uri,attr"`
	EncryptedKey EncryptedKey `xml:"encryptedKey"`
}

// EncryptedKey used to generate the encrypting key.
type EncryptedKey struct {
	XMLName                    xml.Name `xml:"http://schemas.microsoft.com/office/2006/keyEncryptor/password encryptedKey"`
	SpinCount                  int      `xml:"spinCount,attr"`
	EncryptedVerifierHashInput string   `xml:"encryptedVerifierHashInput,attr"`
	EncryptedVerifierHashValue string   `xml:"encryptedVerifierHashValue,attr"`
	EncryptedKeyValue          string   `xml:"encryptedKeyValue,attr"`
	KeyData
}

// StandardEncryptionHeader structure is used by ECMA-376 document encryption
// [ECMA-376] and Office binary document RC4 CryptoAPI encryption, to specify
// encryption properties for an encrypted stream.
type StandardEncryptionHeader struct {
	Flags        uint32
	SizeExtra    uint32
	AlgID        uint32
	AlgIDHash    uint32
	KeySize      uint32
	ProviderType uint32
	Reserved1    uint32
	Reserved2    uint32
	CspName      string
}

// StandardEncryptionVerifier structure is used by Office Binary Document RC4
// CryptoAPI Encryption and ECMA-376 Document Encryption. Every usage of this
// structure MUST specify the hashing algorithm and encryption algorithm used
// in the EncryptionVerifier structure.
type StandardEncryptionVerifier struct {
	SaltSize              uint32
	Salt                  []byte
	EncryptedVerifier     []byte
	VerifierHashSize      uint32
	EncryptedVerifierHash []byte
}

// Decrypt API decrypt the CFB file format with ECMA-376 agile encryption and
// standard encryption. Support cryptographic algorithm: MD4, MD5, RIPEMD-160,
// SHA1, SHA256, SHA384 and SHA512 currently.
func Decrypt(raw []byte, opt *Options) (packageBuf []byte, err error) {
	doc, err := mscfb.New(bytes.NewReader(raw))
	if err != nil {
		return
	}
	encryptionInfoBuf, encryptedPackageBuf := extractPart(doc)
	mechanism, err := encryptionMechanism(encryptionInfoBuf)
	if err != nil || mechanism == "extensible" {
		return
	}
	switch mechanism {
	case "agile":
		return agileDecrypt(encryptionInfoBuf, encryptedPackageBuf, opt)
	case "standard":
		return standardDecrypt(encryptionInfoBuf, encryptedPackageBuf, opt)
	default:
		err = errors.New("unsupport encryption mechanism")
		break
	}
	return
}

// Encrypt API encrypt data with the password.
func Encrypt(raw []byte, opt *Options) (packageBuf []byte, err error) {
	// Generate a random key to use to encrypt the document. Excel uses 32 bytes. We'll use the password to encrypt this key.
	packageKey, _ := randomBytes(32)
	keyDataSaltValue, _ := randomBytes(16)
	keyEncryptors, _ := randomBytes(16)
	encryptionInfo := Encryption{
		KeyData: KeyData{
			BlockSize:       16,
			KeyBits:         len(packageKey) * 8,
			HashSize:        64,
			CipherAlgorithm: "AES",
			CipherChaining:  "ChainingModeCBC",
			HashAlgorithm:   "SHA512",
			SaltValue:       base64.StdEncoding.EncodeToString(keyDataSaltValue),
		},
		KeyEncryptors: KeyEncryptors{KeyEncryptor: []KeyEncryptor{{
			EncryptedKey: EncryptedKey{SpinCount: 100000, KeyData: KeyData{
				CipherAlgorithm: "AES",
				CipherChaining:  "ChainingModeCBC",
				HashAlgorithm:   "SHA512",
				HashSize:        64,
				BlockSize:       16,
				KeyBits:         256,
				SaltValue:       base64.StdEncoding.EncodeToString(keyEncryptors)},
			}}},
		},
	}

	// Package Encryption

	// Encrypt package using the package key.
	encryptedPackage, err := cryptPackage(true, packageKey, raw, encryptionInfo)
	if err != nil {
		return
	}

	// Data Integrity

	// Create the data integrity fields used by clients for integrity checks.
	// Generate a random array of bytes to use in HMAC. The docs say to use the same length as the key salt, but Excel seems to use 64.
	hmacKey, _ := randomBytes(64)
	if err != nil {
		return
	}
	// Create an initialization vector using the package encryption info and the appropriate block key.
	hmacKeyIV, err := createIV(blockKeyHmacKey, encryptionInfo)
	if err != nil {
		return
	}
	// Use the package key and the IV to encrypt the HMAC key.
	encryptedHmacKey, err := crypt(true, encryptionInfo.KeyData.CipherAlgorithm, encryptionInfo.KeyData.CipherChaining, packageKey, hmacKeyIV, hmacKey)
	// Create the HMAC.
	h := hmac.New(sha512.New, append(hmacKey, encryptedPackage...))
	for _, buf := range [][]byte{hmacKey, encryptedPackage} {
		h.Write(buf)
	}
	hmacValue := h.Sum(nil)
	// Generate an initialization vector for encrypting the resulting HMAC value.
	hmacValueIV, err := createIV(blockKeyHmacValue, encryptionInfo)
	if err != nil {
		return
	}
	// Encrypt the value.
	encryptedHmacValue, err := crypt(true, encryptionInfo.KeyData.CipherAlgorithm, encryptionInfo.KeyData.CipherChaining, packageKey, hmacValueIV, hmacValue)
	// Put the encrypted key and value on the encryption info.
	encryptionInfo.DataIntegrity.EncryptedHmacKey = base64.StdEncoding.EncodeToString(encryptedHmacKey)
	encryptionInfo.DataIntegrity.EncryptedHmacValue = base64.StdEncoding.EncodeToString(encryptedHmacValue)

	// Key Encryption

	// Convert the password to an encryption key.
	key, err := convertPasswdToKey(opt.Password, blockKey, encryptionInfo)
	if err != nil {
		return
	}
	// Encrypt the package key with the encryption key.
	encryptedKeyValue, err := crypt(true, encryptionInfo.KeyEncryptors.KeyEncryptor[0].EncryptedKey.CipherAlgorithm, encryptionInfo.KeyEncryptors.KeyEncryptor[0].EncryptedKey.CipherChaining, key, keyEncryptors, packageKey)
	encryptionInfo.KeyEncryptors.KeyEncryptor[0].EncryptedKey.EncryptedKeyValue = base64.StdEncoding.EncodeToString(encryptedKeyValue)

	// Verifier hash

	// Create a random byte array for hashing.
	verifierHashInput, _ := randomBytes(16)
	// Create an encryption key from the password for the input.
	verifierHashInputKey, err := convertPasswdToKey(opt.Password, blockKeyVerifierHashInput, encryptionInfo)
	if err != nil {
		return
	}
	// Use the key to encrypt the verifier input.
	encryptedVerifierHashInput, err := crypt(true, encryptionInfo.KeyData.CipherAlgorithm, encryptionInfo.KeyData.CipherChaining, verifierHashInputKey, keyEncryptors, verifierHashInput)
	if err != nil {
		return
	}
	encryptionInfo.KeyEncryptors.KeyEncryptor[0].EncryptedKey.EncryptedVerifierHashInput = base64.StdEncoding.EncodeToString(encryptedVerifierHashInput)
	// Create a hash of the input.
	verifierHashValue := hashing(encryptionInfo.KeyData.HashAlgorithm, verifierHashInput)
	// Create an encryption key from the password for the hash.
	verifierHashValueKey, err := convertPasswdToKey(opt.Password, blockKeyVerifierHashValue, encryptionInfo)
	if err != nil {
		return
	}
	// Use the key to encrypt the hash value.
	encryptedVerifierHashValue, err := crypt(true, encryptionInfo.KeyData.CipherAlgorithm, encryptionInfo.KeyData.CipherChaining, verifierHashValueKey, keyEncryptors, verifierHashValue)
	if err != nil {
		return
	}
	encryptionInfo.KeyEncryptors.KeyEncryptor[0].EncryptedKey.EncryptedVerifierHashValue = base64.StdEncoding.EncodeToString(encryptedVerifierHashValue)
	// Marshal the encryption info buffer.
	encryptionInfoBuffer, err := xml.Marshal(encryptionInfo)
	if err != nil {
		return
	}
	// TODO: Create a new CFB.
	_, _ = encryptedPackage, encryptionInfoBuffer
	err = errors.New("not support encryption currently")
	return
}

// extractPart extract data from storage by specified part name.
func extractPart(doc *mscfb.Reader) (encryptionInfoBuf, encryptedPackageBuf []byte) {
	for entry, err := doc.Next(); err == nil; entry, err = doc.Next() {
		switch entry.Name {
		case "EncryptionInfo":
			buf := make([]byte, entry.Size)
			i, _ := doc.Read(buf)
			if i > 0 {
				encryptionInfoBuf = buf
				break
			}
		case "EncryptedPackage":
			buf := make([]byte, entry.Size)
			i, _ := doc.Read(buf)
			if i > 0 {
				encryptedPackageBuf = buf
				break
			}
		}
	}
	return
}

// encryptionMechanism parse password-protected documents created mechanism.
func encryptionMechanism(buffer []byte) (mechanism string, err error) {
	if len(buffer) < 4 {
		err = errors.New("unknown encryption mechanism")
		return
	}
	versionMajor, versionMinor := binary.LittleEndian.Uint16(buffer[0:2]), binary.LittleEndian.Uint16(buffer[2:4])
	if versionMajor == 4 && versionMinor == 4 {
		mechanism = "agile"
		return
	} else if (2 <= versionMajor && versionMajor <= 4) && versionMinor == 2 {
		mechanism = "standard"
		return
	} else if (versionMajor == 3 || versionMajor == 4) && versionMinor == 3 {
		mechanism = "extensible"
	}
	err = errors.New("unsupport encryption mechanism")
	return
}

// ECMA-376 Standard Encryption

// standardDecrypt decrypt the CFB file format with ECMA-376 standard encryption.
func standardDecrypt(encryptionInfoBuf, encryptedPackageBuf []byte, opt *Options) ([]byte, error) {
	encryptionHeaderSize := binary.LittleEndian.Uint32(encryptionInfoBuf[8:12])
	block := encryptionInfoBuf[12 : 12+encryptionHeaderSize]
	header := StandardEncryptionHeader{
		Flags:        binary.LittleEndian.Uint32(block[:4]),
		SizeExtra:    binary.LittleEndian.Uint32(block[4:8]),
		AlgID:        binary.LittleEndian.Uint32(block[8:12]),
		AlgIDHash:    binary.LittleEndian.Uint32(block[12:16]),
		KeySize:      binary.LittleEndian.Uint32(block[16:20]),
		ProviderType: binary.LittleEndian.Uint32(block[20:24]),
		Reserved1:    binary.LittleEndian.Uint32(block[24:28]),
		Reserved2:    binary.LittleEndian.Uint32(block[28:32]),
		CspName:      string(block[32:]),
	}
	block = encryptionInfoBuf[12+encryptionHeaderSize:]
	algIDMap := map[uint32]string{
		0x0000660E: "AES-128",
		0x0000660F: "AES-192",
		0x00006610: "AES-256",
	}
	algorithm := "AES"
	_, ok := algIDMap[header.AlgID]
	if !ok {
		algorithm = "RC4"
	}
	verifier := standardEncryptionVerifier(algorithm, block)
	secretKey, err := standardConvertPasswdToKey(header, verifier, opt)
	if err != nil {
		return nil, err
	}
	// decrypted data
	x := encryptedPackageBuf[8:]
	blob, err := aes.NewCipher(secretKey)
	if err != nil {
		return nil, err
	}
	decrypted := make([]byte, len(x))
	size := 16
	for bs, be := 0, size; bs < len(x); bs, be = bs+size, be+size {
		blob.Decrypt(decrypted[bs:be], x[bs:be])
	}
	return decrypted, err
}

// standardEncryptionVerifier extract ECMA-376 standard encryption verifier.
func standardEncryptionVerifier(algorithm string, blob []byte) StandardEncryptionVerifier {
	verifier := StandardEncryptionVerifier{
		SaltSize:          binary.LittleEndian.Uint32(blob[:4]),
		Salt:              blob[4:20],
		EncryptedVerifier: blob[20:36],
		VerifierHashSize:  binary.LittleEndian.Uint32(blob[36:40]),
	}
	if algorithm == "RC4" {
		verifier.EncryptedVerifierHash = blob[40:60]
	} else if algorithm == "AES" {
		verifier.EncryptedVerifierHash = blob[40:72]
	}
	return verifier
}

// standardConvertPasswdToKey generate intermediate key from given password.
func standardConvertPasswdToKey(header StandardEncryptionHeader, verifier StandardEncryptionVerifier, opt *Options) ([]byte, error) {
	encoder := unicode.UTF16(unicode.LittleEndian, unicode.IgnoreBOM).NewEncoder()
	passwordBuffer, err := encoder.Bytes([]byte(opt.Password))
	if err != nil {
		return nil, err
	}
	key := hashing("sha1", verifier.Salt, passwordBuffer)
	for i := 0; i < iterCount; i++ {
		iterator := createUInt32LEBuffer(i, 4)
		key = hashing("sha1", iterator, key)
	}
	var block int
	hfinal := hashing("sha1", key, createUInt32LEBuffer(block, 4))
	cbRequiredKeyLength := int(header.KeySize) / 8
	cbHash := sha1.Size
	buf1 := bytes.Repeat([]byte{0x36}, 64)
	buf1 = append(standardXORBytes(hfinal, buf1[:cbHash]), buf1[cbHash:]...)
	x1 := hashing("sha1", buf1)
	buf2 := bytes.Repeat([]byte{0x5c}, 64)
	buf2 = append(standardXORBytes(hfinal, buf2[:cbHash]), buf2[cbHash:]...)
	x2 := hashing("sha1", buf2)
	x3 := append(x1, x2...)
	keyDerived := x3[:cbRequiredKeyLength]
	return keyDerived, err
}

// standardXORBytes perform XOR operations for two bytes slice.
func standardXORBytes(a, b []byte) []byte {
	r := make([][2]byte, len(a), len(a))
	for i, e := range a {
		r[i] = [2]byte{e, b[i]}
	}
	buf := make([]byte, len(a))
	for p, q := range r {
		buf[p] = q[0] ^ q[1]
	}
	return buf
}

// ECMA-376 Agile Encryption

// agileDecrypt decrypt the CFB file format with ECMA-376 agile encryption.
// Support cryptographic algorithm: MD4, MD5, RIPEMD-160, SHA1, SHA256, SHA384 and SHA512.
func agileDecrypt(encryptionInfoBuf, encryptedPackageBuf []byte, opt *Options) (packageBuf []byte, err error) {
	var encryptionInfo Encryption
	if encryptionInfo, err = parseEncryptionInfo(encryptionInfoBuf[8:]); err != nil {
		return
	}
	// Convert the password into an encryption key.
	key, err := convertPasswdToKey(opt.Password, blockKey, encryptionInfo)
	if err != nil {
		return
	}
	// Use the key to decrypt the package key.
	encryptedKey := encryptionInfo.KeyEncryptors.KeyEncryptor[0].EncryptedKey
	saltValue, err := base64.StdEncoding.DecodeString(encryptedKey.SaltValue)
	if err != nil {
		return
	}
	encryptedKeyValue, err := base64.StdEncoding.DecodeString(encryptedKey.EncryptedKeyValue)
	if err != nil {
		return
	}
	packageKey, err := crypt(false, encryptedKey.CipherAlgorithm, encryptedKey.CipherChaining, key, saltValue, encryptedKeyValue)
	// Use the package key to decrypt the package.
	return cryptPackage(false, packageKey, encryptedPackageBuf, encryptionInfo)
}

// convertPasswdToKey convert the password into an encryption key.
func convertPasswdToKey(passwd string, blockKey []byte, encryption Encryption) (key []byte, err error) {
	var b bytes.Buffer
	saltValue, err := base64.StdEncoding.DecodeString(encryption.KeyEncryptors.KeyEncryptor[0].EncryptedKey.SaltValue)
	if err != nil {
		return
	}
	b.Write(saltValue)
	encoder := unicode.UTF16(unicode.LittleEndian, unicode.IgnoreBOM).NewEncoder()
	passwordBuffer, err := encoder.Bytes([]byte(passwd))
	if err != nil {
		return
	}
	b.Write(passwordBuffer)
	// Generate the initial hash.
	key = hashing(encryption.KeyData.HashAlgorithm, b.Bytes())
	// Now regenerate until spin count.
	for i := 0; i < encryption.KeyEncryptors.KeyEncryptor[0].EncryptedKey.SpinCount; i++ {
		iterator := createUInt32LEBuffer(i, 4)
		key = hashing(encryption.KeyData.HashAlgorithm, iterator, key)
	}
	// Now generate the final hash.
	key = hashing(encryption.KeyData.HashAlgorithm, key, blockKey)
	// Truncate or pad as needed to get to length of keyBits.
	keyBytes := encryption.KeyEncryptors.KeyEncryptor[0].EncryptedKey.KeyBits / 8
	if len(key) < keyBytes {
		tmp := make([]byte, 0x36)
		key = append(key, tmp...)
		key = tmp
	} else if len(key) > keyBytes {
		key = key[:keyBytes]
	}
	return
}

// hashing data by specified hash algorithm.
func hashing(hashAlgorithm string, buffer ...[]byte) (key []byte) {
	var hashMap = map[string]hash.Hash{
		"md4":        md4.New(),
		"md5":        md5.New(),
		"ripemd-160": ripemd160.New(),
		"sha1":       sha1.New(),
		"sha256":     sha256.New(),
		"sha384":     sha512.New384(),
		"sha512":     sha512.New(),
	}
	handler, ok := hashMap[strings.ToLower(hashAlgorithm)]
	if !ok {
		return key
	}
	for _, buf := range buffer {
		handler.Write(buf)
	}
	key = handler.Sum(nil)
	return key
}

// createUInt32LEBuffer create buffer with little endian 32-bit unsigned
// integer.
func createUInt32LEBuffer(value int, bufferSize int) []byte {
	buf := make([]byte, bufferSize)
	binary.LittleEndian.PutUint32(buf, uint32(value))
	return buf
}

// parseEncryptionInfo parse the encryption info XML into an object.
func parseEncryptionInfo(encryptionInfo []byte) (encryption Encryption, err error) {
	err = xml.Unmarshal(encryptionInfo, &encryption)
	return
}

// crypt encrypt / decrypt input by given cipher algorithm, cipher chaining,
// key and initialization vector.
func crypt(encrypt bool, cipherAlgorithm, cipherChaining string, key, iv, input []byte) (packageKey []byte, err error) {
	block, err := aes.NewCipher(key)
	if err != nil {
		return input, err
	}
	var stream cipher.BlockMode
	if encrypt {
		stream = cipher.NewCBCEncrypter(block, iv)
	} else {
		stream = cipher.NewCBCDecrypter(block, iv)
	}
	stream.CryptBlocks(input, input)
	return input, nil
}

// cryptPackage encrypt / decrypt package by given packageKey and encryption
// info.
func cryptPackage(encrypt bool, packageKey, input []byte, encryption Encryption) (outputChunks []byte, err error) {
	encryptedKey := encryption.KeyData
	var offset = packageOffset
	if encrypt {
		offset = 0
	}
	var i, start, end int
	var iv, outputChunk []byte
	for end < len(input) {
		start = end
		end = start + packageEncryptionChunkSize

		if end > len(input) {
			end = len(input)
		}
		// Grab the next chunk
		var inputChunk []byte
		if (end + offset) < len(input) {
			inputChunk = input[start+offset : end+offset]
		} else {
			inputChunk = input[start+offset : end]
		}

		// Pad the chunk if it is not an integer multiple of the block size
		remainder := len(inputChunk) % encryptedKey.BlockSize
		if remainder != 0 {
			inputChunk = append(inputChunk, make([]byte, encryptedKey.BlockSize-remainder)...)
		}
		// Create the initialization vector
		iv, err = createIV(i, encryption)
		if err != nil {
			return
		}
		// Encrypt/decrypt the chunk and add it to the array
		outputChunk, err = crypt(encrypt, encryptedKey.CipherAlgorithm, encryptedKey.CipherChaining, packageKey, iv, inputChunk)
		if err != nil {
			return
		}
		outputChunks = append(outputChunks, outputChunk...)
		i++
	}
	if encrypt {
		outputChunks = append(createUInt32LEBuffer(len(input), 8), outputChunks...)
	}
	return
}

// createIV create an initialization vector (IV).
func createIV(blockKey interface{}, encryption Encryption) ([]byte, error) {
	encryptedKey := encryption.KeyData
	// Create the block key from the current index
	var blockKeyBuf []byte
	if reflect.TypeOf(blockKey).Kind() == reflect.Int {
		blockKeyBuf = createUInt32LEBuffer(blockKey.(int), 4)
	} else {
		blockKeyBuf = blockKey.([]byte)
	}
	saltValue, err := base64.StdEncoding.DecodeString(encryptedKey.SaltValue)
	if err != nil {
		return nil, err
	}
	// Create the initialization vector by hashing the salt with the block key.
	// Truncate or pad as needed to meet the block size.
	iv := hashing(encryptedKey.HashAlgorithm, append(saltValue, blockKeyBuf...))
	if len(iv) < encryptedKey.BlockSize {
		tmp := make([]byte, 0x36)
		iv = append(iv, tmp...)
		iv = tmp
	} else if len(iv) > encryptedKey.BlockSize {
		iv = iv[0:encryptedKey.BlockSize]
	}
	return iv, nil
}

// randomBytes returns securely generated random bytes. It will return an error if the system's
// secure random number generator fails to function correctly, in which case the caller should not
// continue.
func randomBytes(n int) ([]byte, error) {
	b := make([]byte, n)
	_, err := rand.Read(b)
	return b, err
}