histogram.go 21.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
// Copyright 2015 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

package prometheus

import (
	"fmt"
	"math"
	"runtime"
	"sort"
	"sync"
	"sync/atomic"
	"time"

	//lint:ignore SA1019 Need to keep deprecated package for compatibility.
	"github.com/golang/protobuf/proto"

	dto "github.com/prometheus/client_model/go"
)

// A Histogram counts individual observations from an event or sample stream in
// configurable buckets. Similar to a summary, it also provides a sum of
// observations and an observation count.
//
// On the Prometheus server, quantiles can be calculated from a Histogram using
// the histogram_quantile function in the query language.
//
// Note that Histograms, in contrast to Summaries, can be aggregated with the
// Prometheus query language (see the documentation for detailed
// procedures). However, Histograms require the user to pre-define suitable
// buckets, and they are in general less accurate. The Observe method of a
// Histogram has a very low performance overhead in comparison with the Observe
// method of a Summary.
//
// To create Histogram instances, use NewHistogram.
type Histogram interface {
	Metric
	Collector

	// Observe adds a single observation to the histogram.
	Observe(float64)
}

// bucketLabel is used for the label that defines the upper bound of a
// bucket of a histogram ("le" -> "less or equal").
const bucketLabel = "le"

// DefBuckets are the default Histogram buckets. The default buckets are
// tailored to broadly measure the response time (in seconds) of a network
// service. Most likely, however, you will be required to define buckets
// customized to your use case.
var (
	DefBuckets = []float64{.005, .01, .025, .05, .1, .25, .5, 1, 2.5, 5, 10}

	errBucketLabelNotAllowed = fmt.Errorf(
		"%q is not allowed as label name in histograms", bucketLabel,
	)
)

// LinearBuckets creates 'count' buckets, each 'width' wide, where the lowest
// bucket has an upper bound of 'start'. The final +Inf bucket is not counted
// and not included in the returned slice. The returned slice is meant to be
// used for the Buckets field of HistogramOpts.
//
// The function panics if 'count' is zero or negative.
func LinearBuckets(start, width float64, count int) []float64 {
	if count < 1 {
		panic("LinearBuckets needs a positive count")
	}
	buckets := make([]float64, count)
	for i := range buckets {
		buckets[i] = start
		start += width
	}
	return buckets
}

// ExponentialBuckets creates 'count' buckets, where the lowest bucket has an
// upper bound of 'start' and each following bucket's upper bound is 'factor'
// times the previous bucket's upper bound. The final +Inf bucket is not counted
// and not included in the returned slice. The returned slice is meant to be
// used for the Buckets field of HistogramOpts.
//
// The function panics if 'count' is 0 or negative, if 'start' is 0 or negative,
// or if 'factor' is less than or equal 1.
func ExponentialBuckets(start, factor float64, count int) []float64 {
	if count < 1 {
		panic("ExponentialBuckets needs a positive count")
	}
	if start <= 0 {
		panic("ExponentialBuckets needs a positive start value")
	}
	if factor <= 1 {
		panic("ExponentialBuckets needs a factor greater than 1")
	}
	buckets := make([]float64, count)
	for i := range buckets {
		buckets[i] = start
		start *= factor
	}
	return buckets
}

// HistogramOpts bundles the options for creating a Histogram metric. It is
// mandatory to set Name to a non-empty string. All other fields are optional
// and can safely be left at their zero value, although it is strongly
// encouraged to set a Help string.
type HistogramOpts struct {
	// Namespace, Subsystem, and Name are components of the fully-qualified
	// name of the Histogram (created by joining these components with
	// "_"). Only Name is mandatory, the others merely help structuring the
	// name. Note that the fully-qualified name of the Histogram must be a
	// valid Prometheus metric name.
	Namespace string
	Subsystem string
	Name      string

	// Help provides information about this Histogram.
	//
	// Metrics with the same fully-qualified name must have the same Help
	// string.
	Help string

	// ConstLabels are used to attach fixed labels to this metric. Metrics
	// with the same fully-qualified name must have the same label names in
	// their ConstLabels.
	//
	// ConstLabels are only used rarely. In particular, do not use them to
	// attach the same labels to all your metrics. Those use cases are
	// better covered by target labels set by the scraping Prometheus
	// server, or by one specific metric (e.g. a build_info or a
	// machine_role metric). See also
	// https://prometheus.io/docs/instrumenting/writing_exporters/#target-labels-not-static-scraped-labels
	ConstLabels Labels

	// Buckets defines the buckets into which observations are counted. Each
	// element in the slice is the upper inclusive bound of a bucket. The
	// values must be sorted in strictly increasing order. There is no need
	// to add a highest bucket with +Inf bound, it will be added
	// implicitly. The default value is DefBuckets.
	Buckets []float64
}

// NewHistogram creates a new Histogram based on the provided HistogramOpts. It
// panics if the buckets in HistogramOpts are not in strictly increasing order.
//
// The returned implementation also implements ExemplarObserver. It is safe to
// perform the corresponding type assertion. Exemplars are tracked separately
// for each bucket.
func NewHistogram(opts HistogramOpts) Histogram {
	return newHistogram(
		NewDesc(
			BuildFQName(opts.Namespace, opts.Subsystem, opts.Name),
			opts.Help,
			nil,
			opts.ConstLabels,
		),
		opts,
	)
}

func newHistogram(desc *Desc, opts HistogramOpts, labelValues ...string) Histogram {
	if len(desc.variableLabels) != len(labelValues) {
		panic(makeInconsistentCardinalityError(desc.fqName, desc.variableLabels, labelValues))
	}

	for _, n := range desc.variableLabels {
		if n == bucketLabel {
			panic(errBucketLabelNotAllowed)
		}
	}
	for _, lp := range desc.constLabelPairs {
		if lp.GetName() == bucketLabel {
			panic(errBucketLabelNotAllowed)
		}
	}

	if len(opts.Buckets) == 0 {
		opts.Buckets = DefBuckets
	}

	h := &histogram{
		desc:        desc,
		upperBounds: opts.Buckets,
		labelPairs:  makeLabelPairs(desc, labelValues),
		counts:      [2]*histogramCounts{{}, {}},
		now:         time.Now,
	}
	for i, upperBound := range h.upperBounds {
		if i < len(h.upperBounds)-1 {
			if upperBound >= h.upperBounds[i+1] {
				panic(fmt.Errorf(
					"histogram buckets must be in increasing order: %f >= %f",
					upperBound, h.upperBounds[i+1],
				))
			}
		} else {
			if math.IsInf(upperBound, +1) {
				// The +Inf bucket is implicit. Remove it here.
				h.upperBounds = h.upperBounds[:i]
			}
		}
	}
	// Finally we know the final length of h.upperBounds and can make buckets
	// for both counts as well as exemplars:
	h.counts[0].buckets = make([]uint64, len(h.upperBounds))
	h.counts[1].buckets = make([]uint64, len(h.upperBounds))
	h.exemplars = make([]atomic.Value, len(h.upperBounds)+1)

	h.init(h) // Init self-collection.
	return h
}

type histogramCounts struct {
	// sumBits contains the bits of the float64 representing the sum of all
	// observations. sumBits and count have to go first in the struct to
	// guarantee alignment for atomic operations.
	// http://golang.org/pkg/sync/atomic/#pkg-note-BUG
	sumBits uint64
	count   uint64
	buckets []uint64
}

type histogram struct {
	// countAndHotIdx enables lock-free writes with use of atomic updates.
	// The most significant bit is the hot index [0 or 1] of the count field
	// below. Observe calls update the hot one. All remaining bits count the
	// number of Observe calls. Observe starts by incrementing this counter,
	// and finish by incrementing the count field in the respective
	// histogramCounts, as a marker for completion.
	//
	// Calls of the Write method (which are non-mutating reads from the
	// perspective of the histogram) swap the hot–cold under the writeMtx
	// lock. A cooldown is awaited (while locked) by comparing the number of
	// observations with the initiation count. Once they match, then the
	// last observation on the now cool one has completed. All cool fields must
	// be merged into the new hot before releasing writeMtx.
	//
	// Fields with atomic access first! See alignment constraint:
	// http://golang.org/pkg/sync/atomic/#pkg-note-BUG
	countAndHotIdx uint64

	selfCollector
	desc     *Desc
	writeMtx sync.Mutex // Only used in the Write method.

	// Two counts, one is "hot" for lock-free observations, the other is
	// "cold" for writing out a dto.Metric. It has to be an array of
	// pointers to guarantee 64bit alignment of the histogramCounts, see
	// http://golang.org/pkg/sync/atomic/#pkg-note-BUG.
	counts [2]*histogramCounts

	upperBounds []float64
	labelPairs  []*dto.LabelPair
	exemplars   []atomic.Value // One more than buckets (to include +Inf), each a *dto.Exemplar.

	now func() time.Time // To mock out time.Now() for testing.
}

func (h *histogram) Desc() *Desc {
	return h.desc
}

func (h *histogram) Observe(v float64) {
	h.observe(v, h.findBucket(v))
}

func (h *histogram) ObserveWithExemplar(v float64, e Labels) {
	i := h.findBucket(v)
	h.observe(v, i)
	h.updateExemplar(v, i, e)
}

func (h *histogram) Write(out *dto.Metric) error {
	// For simplicity, we protect this whole method by a mutex. It is not in
	// the hot path, i.e. Observe is called much more often than Write. The
	// complication of making Write lock-free isn't worth it, if possible at
	// all.
	h.writeMtx.Lock()
	defer h.writeMtx.Unlock()

	// Adding 1<<63 switches the hot index (from 0 to 1 or from 1 to 0)
	// without touching the count bits. See the struct comments for a full
	// description of the algorithm.
	n := atomic.AddUint64(&h.countAndHotIdx, 1<<63)
	// count is contained unchanged in the lower 63 bits.
	count := n & ((1 << 63) - 1)
	// The most significant bit tells us which counts is hot. The complement
	// is thus the cold one.
	hotCounts := h.counts[n>>63]
	coldCounts := h.counts[(^n)>>63]

	// Await cooldown.
	for count != atomic.LoadUint64(&coldCounts.count) {
		runtime.Gosched() // Let observations get work done.
	}

	his := &dto.Histogram{
		Bucket:      make([]*dto.Bucket, len(h.upperBounds)),
		SampleCount: proto.Uint64(count),
		SampleSum:   proto.Float64(math.Float64frombits(atomic.LoadUint64(&coldCounts.sumBits))),
	}
	var cumCount uint64
	for i, upperBound := range h.upperBounds {
		cumCount += atomic.LoadUint64(&coldCounts.buckets[i])
		his.Bucket[i] = &dto.Bucket{
			CumulativeCount: proto.Uint64(cumCount),
			UpperBound:      proto.Float64(upperBound),
		}
		if e := h.exemplars[i].Load(); e != nil {
			his.Bucket[i].Exemplar = e.(*dto.Exemplar)
		}
	}
	// If there is an exemplar for the +Inf bucket, we have to add that bucket explicitly.
	if e := h.exemplars[len(h.upperBounds)].Load(); e != nil {
		b := &dto.Bucket{
			CumulativeCount: proto.Uint64(count),
			UpperBound:      proto.Float64(math.Inf(1)),
			Exemplar:        e.(*dto.Exemplar),
		}
		his.Bucket = append(his.Bucket, b)
	}

	out.Histogram = his
	out.Label = h.labelPairs

	// Finally add all the cold counts to the new hot counts and reset the cold counts.
	atomic.AddUint64(&hotCounts.count, count)
	atomic.StoreUint64(&coldCounts.count, 0)
	for {
		oldBits := atomic.LoadUint64(&hotCounts.sumBits)
		newBits := math.Float64bits(math.Float64frombits(oldBits) + his.GetSampleSum())
		if atomic.CompareAndSwapUint64(&hotCounts.sumBits, oldBits, newBits) {
			atomic.StoreUint64(&coldCounts.sumBits, 0)
			break
		}
	}
	for i := range h.upperBounds {
		atomic.AddUint64(&hotCounts.buckets[i], atomic.LoadUint64(&coldCounts.buckets[i]))
		atomic.StoreUint64(&coldCounts.buckets[i], 0)
	}
	return nil
}

// findBucket returns the index of the bucket for the provided value, or
// len(h.upperBounds) for the +Inf bucket.
func (h *histogram) findBucket(v float64) int {
	// TODO(beorn7): For small numbers of buckets (<30), a linear search is
	// slightly faster than the binary search. If we really care, we could
	// switch from one search strategy to the other depending on the number
	// of buckets.
	//
	// Microbenchmarks (BenchmarkHistogramNoLabels):
	// 11 buckets: 38.3 ns/op linear - binary 48.7 ns/op
	// 100 buckets: 78.1 ns/op linear - binary 54.9 ns/op
	// 300 buckets: 154 ns/op linear - binary 61.6 ns/op
	return sort.SearchFloat64s(h.upperBounds, v)
}

// observe is the implementation for Observe without the findBucket part.
func (h *histogram) observe(v float64, bucket int) {
	// We increment h.countAndHotIdx so that the counter in the lower
	// 63 bits gets incremented. At the same time, we get the new value
	// back, which we can use to find the currently-hot counts.
	n := atomic.AddUint64(&h.countAndHotIdx, 1)
	hotCounts := h.counts[n>>63]

	if bucket < len(h.upperBounds) {
		atomic.AddUint64(&hotCounts.buckets[bucket], 1)
	}
	for {
		oldBits := atomic.LoadUint64(&hotCounts.sumBits)
		newBits := math.Float64bits(math.Float64frombits(oldBits) + v)
		if atomic.CompareAndSwapUint64(&hotCounts.sumBits, oldBits, newBits) {
			break
		}
	}
	// Increment count last as we take it as a signal that the observation
	// is complete.
	atomic.AddUint64(&hotCounts.count, 1)
}

// updateExemplar replaces the exemplar for the provided bucket. With empty
// labels, it's a no-op. It panics if any of the labels is invalid.
func (h *histogram) updateExemplar(v float64, bucket int, l Labels) {
	if l == nil {
		return
	}
	e, err := newExemplar(v, h.now(), l)
	if err != nil {
		panic(err)
	}
	h.exemplars[bucket].Store(e)
}

// HistogramVec is a Collector that bundles a set of Histograms that all share the
// same Desc, but have different values for their variable labels. This is used
// if you want to count the same thing partitioned by various dimensions
// (e.g. HTTP request latencies, partitioned by status code and method). Create
// instances with NewHistogramVec.
type HistogramVec struct {
	*metricVec
}

// NewHistogramVec creates a new HistogramVec based on the provided HistogramOpts and
// partitioned by the given label names.
func NewHistogramVec(opts HistogramOpts, labelNames []string) *HistogramVec {
	desc := NewDesc(
		BuildFQName(opts.Namespace, opts.Subsystem, opts.Name),
		opts.Help,
		labelNames,
		opts.ConstLabels,
	)
	return &HistogramVec{
		metricVec: newMetricVec(desc, func(lvs ...string) Metric {
			return newHistogram(desc, opts, lvs...)
		}),
	}
}

// GetMetricWithLabelValues returns the Histogram for the given slice of label
// values (same order as the VariableLabels in Desc). If that combination of
// label values is accessed for the first time, a new Histogram is created.
//
// It is possible to call this method without using the returned Histogram to only
// create the new Histogram but leave it at its starting value, a Histogram without
// any observations.
//
// Keeping the Histogram for later use is possible (and should be considered if
// performance is critical), but keep in mind that Reset, DeleteLabelValues and
// Delete can be used to delete the Histogram from the HistogramVec. In that case, the
// Histogram will still exist, but it will not be exported anymore, even if a
// Histogram with the same label values is created later. See also the CounterVec
// example.
//
// An error is returned if the number of label values is not the same as the
// number of VariableLabels in Desc (minus any curried labels).
//
// Note that for more than one label value, this method is prone to mistakes
// caused by an incorrect order of arguments. Consider GetMetricWith(Labels) as
// an alternative to avoid that type of mistake. For higher label numbers, the
// latter has a much more readable (albeit more verbose) syntax, but it comes
// with a performance overhead (for creating and processing the Labels map).
// See also the GaugeVec example.
func (v *HistogramVec) GetMetricWithLabelValues(lvs ...string) (Observer, error) {
	metric, err := v.metricVec.getMetricWithLabelValues(lvs...)
	if metric != nil {
		return metric.(Observer), err
	}
	return nil, err
}

// GetMetricWith returns the Histogram for the given Labels map (the label names
// must match those of the VariableLabels in Desc). If that label map is
// accessed for the first time, a new Histogram is created. Implications of
// creating a Histogram without using it and keeping the Histogram for later use
// are the same as for GetMetricWithLabelValues.
//
// An error is returned if the number and names of the Labels are inconsistent
// with those of the VariableLabels in Desc (minus any curried labels).
//
// This method is used for the same purpose as
// GetMetricWithLabelValues(...string). See there for pros and cons of the two
// methods.
func (v *HistogramVec) GetMetricWith(labels Labels) (Observer, error) {
	metric, err := v.metricVec.getMetricWith(labels)
	if metric != nil {
		return metric.(Observer), err
	}
	return nil, err
}

// WithLabelValues works as GetMetricWithLabelValues, but panics where
// GetMetricWithLabelValues would have returned an error. Not returning an
// error allows shortcuts like
//     myVec.WithLabelValues("404", "GET").Observe(42.21)
func (v *HistogramVec) WithLabelValues(lvs ...string) Observer {
	h, err := v.GetMetricWithLabelValues(lvs...)
	if err != nil {
		panic(err)
	}
	return h
}

// With works as GetMetricWith but panics where GetMetricWithLabels would have
// returned an error. Not returning an error allows shortcuts like
//     myVec.With(prometheus.Labels{"code": "404", "method": "GET"}).Observe(42.21)
func (v *HistogramVec) With(labels Labels) Observer {
	h, err := v.GetMetricWith(labels)
	if err != nil {
		panic(err)
	}
	return h
}

// CurryWith returns a vector curried with the provided labels, i.e. the
// returned vector has those labels pre-set for all labeled operations performed
// on it. The cardinality of the curried vector is reduced accordingly. The
// order of the remaining labels stays the same (just with the curried labels
// taken out of the sequence – which is relevant for the
// (GetMetric)WithLabelValues methods). It is possible to curry a curried
// vector, but only with labels not yet used for currying before.
//
// The metrics contained in the HistogramVec are shared between the curried and
// uncurried vectors. They are just accessed differently. Curried and uncurried
// vectors behave identically in terms of collection. Only one must be
// registered with a given registry (usually the uncurried version). The Reset
// method deletes all metrics, even if called on a curried vector.
func (v *HistogramVec) CurryWith(labels Labels) (ObserverVec, error) {
	vec, err := v.curryWith(labels)
	if vec != nil {
		return &HistogramVec{vec}, err
	}
	return nil, err
}

// MustCurryWith works as CurryWith but panics where CurryWith would have
// returned an error.
func (v *HistogramVec) MustCurryWith(labels Labels) ObserverVec {
	vec, err := v.CurryWith(labels)
	if err != nil {
		panic(err)
	}
	return vec
}

type constHistogram struct {
	desc       *Desc
	count      uint64
	sum        float64
	buckets    map[float64]uint64
	labelPairs []*dto.LabelPair
}

func (h *constHistogram) Desc() *Desc {
	return h.desc
}

func (h *constHistogram) Write(out *dto.Metric) error {
	his := &dto.Histogram{}
	buckets := make([]*dto.Bucket, 0, len(h.buckets))

	his.SampleCount = proto.Uint64(h.count)
	his.SampleSum = proto.Float64(h.sum)

	for upperBound, count := range h.buckets {
		buckets = append(buckets, &dto.Bucket{
			CumulativeCount: proto.Uint64(count),
			UpperBound:      proto.Float64(upperBound),
		})
	}

	if len(buckets) > 0 {
		sort.Sort(buckSort(buckets))
	}
	his.Bucket = buckets

	out.Histogram = his
	out.Label = h.labelPairs

	return nil
}

// NewConstHistogram returns a metric representing a Prometheus histogram with
// fixed values for the count, sum, and bucket counts. As those parameters
// cannot be changed, the returned value does not implement the Histogram
// interface (but only the Metric interface). Users of this package will not
// have much use for it in regular operations. However, when implementing custom
// Collectors, it is useful as a throw-away metric that is generated on the fly
// to send it to Prometheus in the Collect method.
//
// buckets is a map of upper bounds to cumulative counts, excluding the +Inf
// bucket.
//
// NewConstHistogram returns an error if the length of labelValues is not
// consistent with the variable labels in Desc or if Desc is invalid.
func NewConstHistogram(
	desc *Desc,
	count uint64,
	sum float64,
	buckets map[float64]uint64,
	labelValues ...string,
) (Metric, error) {
	if desc.err != nil {
		return nil, desc.err
	}
	if err := validateLabelValues(labelValues, len(desc.variableLabels)); err != nil {
		return nil, err
	}
	return &constHistogram{
		desc:       desc,
		count:      count,
		sum:        sum,
		buckets:    buckets,
		labelPairs: makeLabelPairs(desc, labelValues),
	}, nil
}

// MustNewConstHistogram is a version of NewConstHistogram that panics where
// NewConstMetric would have returned an error.
func MustNewConstHistogram(
	desc *Desc,
	count uint64,
	sum float64,
	buckets map[float64]uint64,
	labelValues ...string,
) Metric {
	m, err := NewConstHistogram(desc, count, sum, buckets, labelValues...)
	if err != nil {
		panic(err)
	}
	return m
}

type buckSort []*dto.Bucket

func (s buckSort) Len() int {
	return len(s)
}

func (s buckSort) Swap(i, j int) {
	s[i], s[j] = s[j], s[i]
}

func (s buckSort) Less(i, j int) bool {
	return s[i].GetUpperBound() < s[j].GetUpperBound()
}