huffman.go 11.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
package brotli

/* Copyright 2013 Google Inc. All Rights Reserved.

   Distributed under MIT license.
   See file LICENSE for detail or copy at https://opensource.org/licenses/MIT
*/

/* Utilities for building Huffman decoding tables. */

const huffmanMaxCodeLength = 15

/* Maximum possible Huffman table size for an alphabet size of (index * 32),
   max code length 15 and root table bits 8. */
var kMaxHuffmanTableSize = []uint16{
	256,
	402,
	436,
	468,
	500,
	534,
	566,
	598,
	630,
	662,
	694,
	726,
	758,
	790,
	822,
	854,
	886,
	920,
	952,
	984,
	1016,
	1048,
	1080,
	1112,
	1144,
	1176,
	1208,
	1240,
	1272,
	1304,
	1336,
	1368,
	1400,
	1432,
	1464,
	1496,
	1528,
}

/* BROTLI_NUM_BLOCK_LEN_SYMBOLS == 26 */
const huffmanMaxSize26 = 396

/* BROTLI_MAX_BLOCK_TYPE_SYMBOLS == 258 */
const huffmanMaxSize258 = 632

/* BROTLI_MAX_CONTEXT_MAP_SYMBOLS == 272 */
const huffmanMaxSize272 = 646

const huffmanMaxCodeLengthCodeLength = 5

/* Do not create this struct directly - use the ConstructHuffmanCode
 * constructor below! */
type huffmanCode struct {
	bits  byte
	value uint16
}

func constructHuffmanCode(bits byte, value uint16) huffmanCode {
	var h huffmanCode
	h.bits = bits
	h.value = value
	return h
}

/* Builds Huffman lookup table assuming code lengths are in symbol order. */

/* Builds Huffman lookup table assuming code lengths are in symbol order.
   Returns size of resulting table. */

/* Builds a simple Huffman table. The |num_symbols| parameter is to be
   interpreted as follows: 0 means 1 symbol, 1 means 2 symbols,
   2 means 3 symbols, 3 means 4 symbols with lengths [2, 2, 2, 2],
   4 means 4 symbols with lengths [1, 2, 3, 3]. */

/* Contains a collection of Huffman trees with the same alphabet size. */
/* max_symbol is needed due to simple codes since log2(alphabet_size) could be
   greater than log2(max_symbol). */
type huffmanTreeGroup struct {
	htrees        [][]huffmanCode
	codes         []huffmanCode
	alphabet_size uint16
	max_symbol    uint16
	num_htrees    uint16
}

const reverseBitsMax = 8

const reverseBitsBase = 0

var kReverseBits = [1 << reverseBitsMax]byte{
	0x00,
	0x80,
	0x40,
	0xC0,
	0x20,
	0xA0,
	0x60,
	0xE0,
	0x10,
	0x90,
	0x50,
	0xD0,
	0x30,
	0xB0,
	0x70,
	0xF0,
	0x08,
	0x88,
	0x48,
	0xC8,
	0x28,
	0xA8,
	0x68,
	0xE8,
	0x18,
	0x98,
	0x58,
	0xD8,
	0x38,
	0xB8,
	0x78,
	0xF8,
	0x04,
	0x84,
	0x44,
	0xC4,
	0x24,
	0xA4,
	0x64,
	0xE4,
	0x14,
	0x94,
	0x54,
	0xD4,
	0x34,
	0xB4,
	0x74,
	0xF4,
	0x0C,
	0x8C,
	0x4C,
	0xCC,
	0x2C,
	0xAC,
	0x6C,
	0xEC,
	0x1C,
	0x9C,
	0x5C,
	0xDC,
	0x3C,
	0xBC,
	0x7C,
	0xFC,
	0x02,
	0x82,
	0x42,
	0xC2,
	0x22,
	0xA2,
	0x62,
	0xE2,
	0x12,
	0x92,
	0x52,
	0xD2,
	0x32,
	0xB2,
	0x72,
	0xF2,
	0x0A,
	0x8A,
	0x4A,
	0xCA,
	0x2A,
	0xAA,
	0x6A,
	0xEA,
	0x1A,
	0x9A,
	0x5A,
	0xDA,
	0x3A,
	0xBA,
	0x7A,
	0xFA,
	0x06,
	0x86,
	0x46,
	0xC6,
	0x26,
	0xA6,
	0x66,
	0xE6,
	0x16,
	0x96,
	0x56,
	0xD6,
	0x36,
	0xB6,
	0x76,
	0xF6,
	0x0E,
	0x8E,
	0x4E,
	0xCE,
	0x2E,
	0xAE,
	0x6E,
	0xEE,
	0x1E,
	0x9E,
	0x5E,
	0xDE,
	0x3E,
	0xBE,
	0x7E,
	0xFE,
	0x01,
	0x81,
	0x41,
	0xC1,
	0x21,
	0xA1,
	0x61,
	0xE1,
	0x11,
	0x91,
	0x51,
	0xD1,
	0x31,
	0xB1,
	0x71,
	0xF1,
	0x09,
	0x89,
	0x49,
	0xC9,
	0x29,
	0xA9,
	0x69,
	0xE9,
	0x19,
	0x99,
	0x59,
	0xD9,
	0x39,
	0xB9,
	0x79,
	0xF9,
	0x05,
	0x85,
	0x45,
	0xC5,
	0x25,
	0xA5,
	0x65,
	0xE5,
	0x15,
	0x95,
	0x55,
	0xD5,
	0x35,
	0xB5,
	0x75,
	0xF5,
	0x0D,
	0x8D,
	0x4D,
	0xCD,
	0x2D,
	0xAD,
	0x6D,
	0xED,
	0x1D,
	0x9D,
	0x5D,
	0xDD,
	0x3D,
	0xBD,
	0x7D,
	0xFD,
	0x03,
	0x83,
	0x43,
	0xC3,
	0x23,
	0xA3,
	0x63,
	0xE3,
	0x13,
	0x93,
	0x53,
	0xD3,
	0x33,
	0xB3,
	0x73,
	0xF3,
	0x0B,
	0x8B,
	0x4B,
	0xCB,
	0x2B,
	0xAB,
	0x6B,
	0xEB,
	0x1B,
	0x9B,
	0x5B,
	0xDB,
	0x3B,
	0xBB,
	0x7B,
	0xFB,
	0x07,
	0x87,
	0x47,
	0xC7,
	0x27,
	0xA7,
	0x67,
	0xE7,
	0x17,
	0x97,
	0x57,
	0xD7,
	0x37,
	0xB7,
	0x77,
	0xF7,
	0x0F,
	0x8F,
	0x4F,
	0xCF,
	0x2F,
	0xAF,
	0x6F,
	0xEF,
	0x1F,
	0x9F,
	0x5F,
	0xDF,
	0x3F,
	0xBF,
	0x7F,
	0xFF,
}

const reverseBitsLowest = (uint64(1) << (reverseBitsMax - 1 + reverseBitsBase))

/* Returns reverse(num >> BROTLI_REVERSE_BITS_BASE, BROTLI_REVERSE_BITS_MAX),
   where reverse(value, len) is the bit-wise reversal of the len least
   significant bits of value. */
func reverseBits8(num uint64) uint64 {
	return uint64(kReverseBits[num])
}

/* Stores code in table[0], table[step], table[2*step], ..., table[end] */
/* Assumes that end is an integer multiple of step */
func replicateValue(table []huffmanCode, step int, end int, code huffmanCode) {
	for {
		end -= step
		table[end] = code
		if end <= 0 {
			break
		}
	}
}

/* Returns the table width of the next 2nd level table. |count| is the histogram
   of bit lengths for the remaining symbols, |len| is the code length of the
   next processed symbol. */
func nextTableBitSize(count []uint16, len int, root_bits int) int {
	var left int = 1 << uint(len-root_bits)
	for len < huffmanMaxCodeLength {
		left -= int(count[len])
		if left <= 0 {
			break
		}
		len++
		left <<= 1
	}

	return len - root_bits
}

func buildCodeLengthsHuffmanTable(table []huffmanCode, code_lengths []byte, count []uint16) {
	var code huffmanCode /* current table entry */ /* symbol index in original or sorted table */ /* prefix code */ /* prefix code addend */ /* step size to replicate values in current table */ /* size of current table */ /* symbols sorted by code length */
	var symbol int
	var key uint64
	var key_step uint64
	var step int
	var table_size int
	var sorted [codeLengthCodes]int
	var offset [huffmanMaxCodeLengthCodeLength + 1]int
	var bits int
	var bits_count int
	/* offsets in sorted table for each length */
	assert(huffmanMaxCodeLengthCodeLength <= reverseBitsMax)

	/* Generate offsets into sorted symbol table by code length. */
	symbol = -1

	bits = 1
	var i int
	for i = 0; i < huffmanMaxCodeLengthCodeLength; i++ {
		symbol += int(count[bits])
		offset[bits] = symbol
		bits++
	}

	/* Symbols with code length 0 are placed after all other symbols. */
	offset[0] = codeLengthCodes - 1

	/* Sort symbols by length, by symbol order within each length. */
	symbol = codeLengthCodes

	for {
		var i int
		for i = 0; i < 6; i++ {
			symbol--
			sorted[offset[code_lengths[symbol]]] = symbol
			offset[code_lengths[symbol]]--
		}
		if symbol == 0 {
			break
		}
	}

	table_size = 1 << huffmanMaxCodeLengthCodeLength

	/* Special case: all symbols but one have 0 code length. */
	if offset[0] == 0 {
		code = constructHuffmanCode(0, uint16(sorted[0]))
		for key = 0; key < uint64(table_size); key++ {
			table[key] = code
		}

		return
	}

	/* Fill in table. */
	key = 0

	key_step = reverseBitsLowest
	symbol = 0
	bits = 1
	step = 2
	for {
		for bits_count = int(count[bits]); bits_count != 0; bits_count-- {
			code = constructHuffmanCode(byte(bits), uint16(sorted[symbol]))
			symbol++
			replicateValue(table[reverseBits8(key):], step, table_size, code)
			key += key_step
		}

		step <<= 1
		key_step >>= 1
		bits++
		if bits > huffmanMaxCodeLengthCodeLength {
			break
		}
	}
}

func buildHuffmanTable(root_table []huffmanCode, root_bits int, symbol_lists symbolList, count []uint16) uint32 {
	var code huffmanCode /* current table entry */ /* next available space in table */ /* current code length */ /* symbol index in original or sorted table */ /* prefix code */ /* prefix code addend */ /* 2nd level table prefix code */ /* 2nd level table prefix code addend */ /* step size to replicate values in current table */ /* key length of current table */ /* size of current table */ /* sum of root table size and 2nd level table sizes */
	var table []huffmanCode
	var len int
	var symbol int
	var key uint64
	var key_step uint64
	var sub_key uint64
	var sub_key_step uint64
	var step int
	var table_bits int
	var table_size int
	var total_size int
	var max_length int = -1
	var bits int
	var bits_count int

	assert(root_bits <= reverseBitsMax)
	assert(huffmanMaxCodeLength-root_bits <= reverseBitsMax)

	for symbolListGet(symbol_lists, max_length) == 0xFFFF {
		max_length--
	}
	max_length += huffmanMaxCodeLength + 1

	table = root_table
	table_bits = root_bits
	table_size = 1 << uint(table_bits)
	total_size = table_size

	/* Fill in the root table. Reduce the table size to if possible,
	   and create the repetitions by memcpy. */
	if table_bits > max_length {
		table_bits = max_length
		table_size = 1 << uint(table_bits)
	}

	key = 0
	key_step = reverseBitsLowest
	bits = 1
	step = 2
	for {
		symbol = bits - (huffmanMaxCodeLength + 1)
		for bits_count = int(count[bits]); bits_count != 0; bits_count-- {
			symbol = int(symbolListGet(symbol_lists, symbol))
			code = constructHuffmanCode(byte(bits), uint16(symbol))
			replicateValue(table[reverseBits8(key):], step, table_size, code)
			key += key_step
		}

		step <<= 1
		key_step >>= 1
		bits++
		if bits > table_bits {
			break
		}
	}

	/* If root_bits != table_bits then replicate to fill the remaining slots. */
	for total_size != table_size {
		copy(table[table_size:], table[:uint(table_size)])
		table_size <<= 1
	}

	/* Fill in 2nd level tables and add pointers to root table. */
	key_step = reverseBitsLowest >> uint(root_bits-1)

	sub_key = reverseBitsLowest << 1
	sub_key_step = reverseBitsLowest
	len = root_bits + 1
	step = 2
	for ; len <= max_length; len++ {
		symbol = len - (huffmanMaxCodeLength + 1)
		for ; count[len] != 0; count[len]-- {
			if sub_key == reverseBitsLowest<<1 {
				table = table[table_size:]
				table_bits = nextTableBitSize(count, int(len), root_bits)
				table_size = 1 << uint(table_bits)
				total_size += table_size
				sub_key = reverseBits8(key)
				key += key_step
				root_table[sub_key] = constructHuffmanCode(byte(table_bits+root_bits), uint16(uint64(uint(-cap(table)+cap(root_table)))-sub_key))
				sub_key = 0
			}

			symbol = int(symbolListGet(symbol_lists, symbol))
			code = constructHuffmanCode(byte(len-root_bits), uint16(symbol))
			replicateValue(table[reverseBits8(sub_key):], step, table_size, code)
			sub_key += sub_key_step
		}

		step <<= 1
		sub_key_step >>= 1
	}

	return uint32(total_size)
}

func buildSimpleHuffmanTable(table []huffmanCode, root_bits int, val []uint16, num_symbols uint32) uint32 {
	var table_size uint32 = 1
	var goal_size uint32 = 1 << uint(root_bits)
	switch num_symbols {
	case 0:
		table[0] = constructHuffmanCode(0, val[0])

	case 1:
		if val[1] > val[0] {
			table[0] = constructHuffmanCode(1, val[0])
			table[1] = constructHuffmanCode(1, val[1])
		} else {
			table[0] = constructHuffmanCode(1, val[1])
			table[1] = constructHuffmanCode(1, val[0])
		}

		table_size = 2

	case 2:
		table[0] = constructHuffmanCode(1, val[0])
		table[2] = constructHuffmanCode(1, val[0])
		if val[2] > val[1] {
			table[1] = constructHuffmanCode(2, val[1])
			table[3] = constructHuffmanCode(2, val[2])
		} else {
			table[1] = constructHuffmanCode(2, val[2])
			table[3] = constructHuffmanCode(2, val[1])
		}

		table_size = 4

	case 3:
		var i int
		var k int
		for i = 0; i < 3; i++ {
			for k = i + 1; k < 4; k++ {
				if val[k] < val[i] {
					var t uint16 = val[k]
					val[k] = val[i]
					val[i] = t
				}
			}
		}

		table[0] = constructHuffmanCode(2, val[0])
		table[2] = constructHuffmanCode(2, val[1])
		table[1] = constructHuffmanCode(2, val[2])
		table[3] = constructHuffmanCode(2, val[3])
		table_size = 4

	case 4:
		if val[3] < val[2] {
			var t uint16 = val[3]
			val[3] = val[2]
			val[2] = t
		}

		table[0] = constructHuffmanCode(1, val[0])
		table[1] = constructHuffmanCode(2, val[1])
		table[2] = constructHuffmanCode(1, val[0])
		table[3] = constructHuffmanCode(3, val[2])
		table[4] = constructHuffmanCode(1, val[0])
		table[5] = constructHuffmanCode(2, val[1])
		table[6] = constructHuffmanCode(1, val[0])
		table[7] = constructHuffmanCode(3, val[3])
		table_size = 8
	}

	for table_size != goal_size {
		copy(table[table_size:], table[:uint(table_size)])
		table_size <<= 1
	}

	return goal_size
}