legacy_message.go 16.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package impl

import (
	"fmt"
	"reflect"
	"strings"
	"sync"

	"google.golang.org/protobuf/internal/descopts"
	ptag "google.golang.org/protobuf/internal/encoding/tag"
	"google.golang.org/protobuf/internal/errors"
	"google.golang.org/protobuf/internal/filedesc"
	"google.golang.org/protobuf/internal/strs"
	"google.golang.org/protobuf/reflect/protoreflect"
	pref "google.golang.org/protobuf/reflect/protoreflect"
	"google.golang.org/protobuf/runtime/protoiface"
	piface "google.golang.org/protobuf/runtime/protoiface"
)

// legacyWrapMessage wraps v as a protoreflect.Message,
// where v must be a *struct kind and not implement the v2 API already.
func legacyWrapMessage(v reflect.Value) pref.Message {
	typ := v.Type()
	if typ.Kind() != reflect.Ptr || typ.Elem().Kind() != reflect.Struct {
		return aberrantMessage{v: v}
	}
	mt := legacyLoadMessageInfo(typ, "")
	return mt.MessageOf(v.Interface())
}

var legacyMessageTypeCache sync.Map // map[reflect.Type]*MessageInfo

// legacyLoadMessageInfo dynamically loads a *MessageInfo for t,
// where t must be a *struct kind and not implement the v2 API already.
// The provided name is used if it cannot be determined from the message.
func legacyLoadMessageInfo(t reflect.Type, name pref.FullName) *MessageInfo {
	// Fast-path: check if a MessageInfo is cached for this concrete type.
	if mt, ok := legacyMessageTypeCache.Load(t); ok {
		return mt.(*MessageInfo)
	}

	// Slow-path: derive message descriptor and initialize MessageInfo.
	mi := &MessageInfo{
		Desc:          legacyLoadMessageDesc(t, name),
		GoReflectType: t,
	}

	v := reflect.Zero(t).Interface()
	if _, ok := v.(legacyMarshaler); ok {
		mi.methods.Marshal = legacyMarshal

		// We have no way to tell whether the type's Marshal method
		// supports deterministic serialization or not, but this
		// preserves the v1 implementation's behavior of always
		// calling Marshal methods when present.
		mi.methods.Flags |= piface.SupportMarshalDeterministic
	}
	if _, ok := v.(legacyUnmarshaler); ok {
		mi.methods.Unmarshal = legacyUnmarshal
	}
	if _, ok := v.(legacyMerger); ok {
		mi.methods.Merge = legacyMerge
	}

	if mi, ok := legacyMessageTypeCache.LoadOrStore(t, mi); ok {
		return mi.(*MessageInfo)
	}
	return mi
}

var legacyMessageDescCache sync.Map // map[reflect.Type]protoreflect.MessageDescriptor

// LegacyLoadMessageDesc returns an MessageDescriptor derived from the Go type,
// which must be a *struct kind and not implement the v2 API already.
//
// This is exported for testing purposes.
func LegacyLoadMessageDesc(t reflect.Type) pref.MessageDescriptor {
	return legacyLoadMessageDesc(t, "")
}
func legacyLoadMessageDesc(t reflect.Type, name pref.FullName) pref.MessageDescriptor {
	// Fast-path: check if a MessageDescriptor is cached for this concrete type.
	if mi, ok := legacyMessageDescCache.Load(t); ok {
		return mi.(pref.MessageDescriptor)
	}

	// Slow-path: initialize MessageDescriptor from the raw descriptor.
	mv := reflect.Zero(t).Interface()
	if _, ok := mv.(pref.ProtoMessage); ok {
		panic(fmt.Sprintf("%v already implements proto.Message", t))
	}
	mdV1, ok := mv.(messageV1)
	if !ok {
		return aberrantLoadMessageDesc(t, name)
	}

	// If this is a dynamic message type where there isn't a 1-1 mapping between
	// Go and protobuf types, calling the Descriptor method on the zero value of
	// the message type isn't likely to work. If it panics, swallow the panic and
	// continue as if the Descriptor method wasn't present.
	b, idxs := func() ([]byte, []int) {
		defer func() {
			recover()
		}()
		return mdV1.Descriptor()
	}()
	if b == nil {
		return aberrantLoadMessageDesc(t, name)
	}

	// If the Go type has no fields, then this might be a proto3 empty message
	// from before the size cache was added. If there are any fields, check to
	// see that at least one of them looks like something we generated.
	if nfield := t.Elem().NumField(); nfield > 0 {
		hasProtoField := false
		for i := 0; i < nfield; i++ {
			f := t.Elem().Field(i)
			if f.Tag.Get("protobuf") != "" || f.Tag.Get("protobuf_oneof") != "" || strings.HasPrefix(f.Name, "XXX_") {
				hasProtoField = true
				break
			}
		}
		if !hasProtoField {
			return aberrantLoadMessageDesc(t, name)
		}
	}

	md := legacyLoadFileDesc(b).Messages().Get(idxs[0])
	for _, i := range idxs[1:] {
		md = md.Messages().Get(i)
	}
	if name != "" && md.FullName() != name {
		panic(fmt.Sprintf("mismatching message name: got %v, want %v", md.FullName(), name))
	}
	if md, ok := legacyMessageDescCache.LoadOrStore(t, md); ok {
		return md.(protoreflect.MessageDescriptor)
	}
	return md
}

var (
	aberrantMessageDescLock  sync.Mutex
	aberrantMessageDescCache map[reflect.Type]protoreflect.MessageDescriptor
)

// aberrantLoadMessageDesc returns an MessageDescriptor derived from the Go type,
// which must not implement protoreflect.ProtoMessage or messageV1.
//
// This is a best-effort derivation of the message descriptor using the protobuf
// tags on the struct fields.
func aberrantLoadMessageDesc(t reflect.Type, name pref.FullName) pref.MessageDescriptor {
	aberrantMessageDescLock.Lock()
	defer aberrantMessageDescLock.Unlock()
	if aberrantMessageDescCache == nil {
		aberrantMessageDescCache = make(map[reflect.Type]protoreflect.MessageDescriptor)
	}
	return aberrantLoadMessageDescReentrant(t, name)
}
func aberrantLoadMessageDescReentrant(t reflect.Type, name pref.FullName) pref.MessageDescriptor {
	// Fast-path: check if an MessageDescriptor is cached for this concrete type.
	if md, ok := aberrantMessageDescCache[t]; ok {
		return md
	}

	// Slow-path: construct a descriptor from the Go struct type (best-effort).
	// Cache the MessageDescriptor early on so that we can resolve internal
	// cyclic references.
	md := &filedesc.Message{L2: new(filedesc.MessageL2)}
	md.L0.FullName = aberrantDeriveMessageName(t, name)
	md.L0.ParentFile = filedesc.SurrogateProto2
	aberrantMessageDescCache[t] = md

	if t.Kind() != reflect.Ptr || t.Elem().Kind() != reflect.Struct {
		return md
	}

	// Try to determine if the message is using proto3 by checking scalars.
	for i := 0; i < t.Elem().NumField(); i++ {
		f := t.Elem().Field(i)
		if tag := f.Tag.Get("protobuf"); tag != "" {
			switch f.Type.Kind() {
			case reflect.Bool, reflect.Int32, reflect.Int64, reflect.Uint32, reflect.Uint64, reflect.Float32, reflect.Float64, reflect.String:
				md.L0.ParentFile = filedesc.SurrogateProto3
			}
			for _, s := range strings.Split(tag, ",") {
				if s == "proto3" {
					md.L0.ParentFile = filedesc.SurrogateProto3
				}
			}
		}
	}

	// Obtain a list of oneof wrapper types.
	var oneofWrappers []reflect.Type
	for _, method := range []string{"XXX_OneofFuncs", "XXX_OneofWrappers"} {
		if fn, ok := t.MethodByName(method); ok {
			for _, v := range fn.Func.Call([]reflect.Value{reflect.Zero(fn.Type.In(0))}) {
				if vs, ok := v.Interface().([]interface{}); ok {
					for _, v := range vs {
						oneofWrappers = append(oneofWrappers, reflect.TypeOf(v))
					}
				}
			}
		}
	}

	// Obtain a list of the extension ranges.
	if fn, ok := t.MethodByName("ExtensionRangeArray"); ok {
		vs := fn.Func.Call([]reflect.Value{reflect.Zero(fn.Type.In(0))})[0]
		for i := 0; i < vs.Len(); i++ {
			v := vs.Index(i)
			md.L2.ExtensionRanges.List = append(md.L2.ExtensionRanges.List, [2]pref.FieldNumber{
				pref.FieldNumber(v.FieldByName("Start").Int()),
				pref.FieldNumber(v.FieldByName("End").Int() + 1),
			})
			md.L2.ExtensionRangeOptions = append(md.L2.ExtensionRangeOptions, nil)
		}
	}

	// Derive the message fields by inspecting the struct fields.
	for i := 0; i < t.Elem().NumField(); i++ {
		f := t.Elem().Field(i)
		if tag := f.Tag.Get("protobuf"); tag != "" {
			tagKey := f.Tag.Get("protobuf_key")
			tagVal := f.Tag.Get("protobuf_val")
			aberrantAppendField(md, f.Type, tag, tagKey, tagVal)
		}
		if tag := f.Tag.Get("protobuf_oneof"); tag != "" {
			n := len(md.L2.Oneofs.List)
			md.L2.Oneofs.List = append(md.L2.Oneofs.List, filedesc.Oneof{})
			od := &md.L2.Oneofs.List[n]
			od.L0.FullName = md.FullName().Append(pref.Name(tag))
			od.L0.ParentFile = md.L0.ParentFile
			od.L0.Parent = md
			od.L0.Index = n

			for _, t := range oneofWrappers {
				if t.Implements(f.Type) {
					f := t.Elem().Field(0)
					if tag := f.Tag.Get("protobuf"); tag != "" {
						aberrantAppendField(md, f.Type, tag, "", "")
						fd := &md.L2.Fields.List[len(md.L2.Fields.List)-1]
						fd.L1.ContainingOneof = od
						od.L1.Fields.List = append(od.L1.Fields.List, fd)
					}
				}
			}
		}
	}

	return md
}

func aberrantDeriveMessageName(t reflect.Type, name pref.FullName) pref.FullName {
	if name.IsValid() {
		return name
	}
	func() {
		defer func() { recover() }() // swallow possible nil panics
		if m, ok := reflect.Zero(t).Interface().(interface{ XXX_MessageName() string }); ok {
			name = pref.FullName(m.XXX_MessageName())
		}
	}()
	if name.IsValid() {
		return name
	}
	if t.Kind() == reflect.Ptr {
		t = t.Elem()
	}
	return AberrantDeriveFullName(t)
}

func aberrantAppendField(md *filedesc.Message, goType reflect.Type, tag, tagKey, tagVal string) {
	t := goType
	isOptional := t.Kind() == reflect.Ptr && t.Elem().Kind() != reflect.Struct
	isRepeated := t.Kind() == reflect.Slice && t.Elem().Kind() != reflect.Uint8
	if isOptional || isRepeated {
		t = t.Elem()
	}
	fd := ptag.Unmarshal(tag, t, placeholderEnumValues{}).(*filedesc.Field)

	// Append field descriptor to the message.
	n := len(md.L2.Fields.List)
	md.L2.Fields.List = append(md.L2.Fields.List, *fd)
	fd = &md.L2.Fields.List[n]
	fd.L0.FullName = md.FullName().Append(fd.Name())
	fd.L0.ParentFile = md.L0.ParentFile
	fd.L0.Parent = md
	fd.L0.Index = n

	if fd.L1.IsWeak || fd.L1.HasPacked {
		fd.L1.Options = func() pref.ProtoMessage {
			opts := descopts.Field.ProtoReflect().New()
			if fd.L1.IsWeak {
				opts.Set(opts.Descriptor().Fields().ByName("weak"), protoreflect.ValueOfBool(true))
			}
			if fd.L1.HasPacked {
				opts.Set(opts.Descriptor().Fields().ByName("packed"), protoreflect.ValueOfBool(fd.L1.IsPacked))
			}
			return opts.Interface()
		}
	}

	// Populate Enum and Message.
	if fd.Enum() == nil && fd.Kind() == pref.EnumKind {
		switch v := reflect.Zero(t).Interface().(type) {
		case pref.Enum:
			fd.L1.Enum = v.Descriptor()
		default:
			fd.L1.Enum = LegacyLoadEnumDesc(t)
		}
	}
	if fd.Message() == nil && (fd.Kind() == pref.MessageKind || fd.Kind() == pref.GroupKind) {
		switch v := reflect.Zero(t).Interface().(type) {
		case pref.ProtoMessage:
			fd.L1.Message = v.ProtoReflect().Descriptor()
		case messageV1:
			fd.L1.Message = LegacyLoadMessageDesc(t)
		default:
			if t.Kind() == reflect.Map {
				n := len(md.L1.Messages.List)
				md.L1.Messages.List = append(md.L1.Messages.List, filedesc.Message{L2: new(filedesc.MessageL2)})
				md2 := &md.L1.Messages.List[n]
				md2.L0.FullName = md.FullName().Append(pref.Name(strs.MapEntryName(string(fd.Name()))))
				md2.L0.ParentFile = md.L0.ParentFile
				md2.L0.Parent = md
				md2.L0.Index = n

				md2.L1.IsMapEntry = true
				md2.L2.Options = func() pref.ProtoMessage {
					opts := descopts.Message.ProtoReflect().New()
					opts.Set(opts.Descriptor().Fields().ByName("map_entry"), protoreflect.ValueOfBool(true))
					return opts.Interface()
				}

				aberrantAppendField(md2, t.Key(), tagKey, "", "")
				aberrantAppendField(md2, t.Elem(), tagVal, "", "")

				fd.L1.Message = md2
				break
			}
			fd.L1.Message = aberrantLoadMessageDescReentrant(t, "")
		}
	}
}

type placeholderEnumValues struct {
	protoreflect.EnumValueDescriptors
}

func (placeholderEnumValues) ByNumber(n pref.EnumNumber) pref.EnumValueDescriptor {
	return filedesc.PlaceholderEnumValue(pref.FullName(fmt.Sprintf("UNKNOWN_%d", n)))
}

// legacyMarshaler is the proto.Marshaler interface superseded by protoiface.Methoder.
type legacyMarshaler interface {
	Marshal() ([]byte, error)
}

// legacyUnmarshaler is the proto.Unmarshaler interface superseded by protoiface.Methoder.
type legacyUnmarshaler interface {
	Unmarshal([]byte) error
}

// legacyMerger is the proto.Merger interface superseded by protoiface.Methoder.
type legacyMerger interface {
	Merge(protoiface.MessageV1)
}

var legacyProtoMethods = &piface.Methods{
	Marshal:   legacyMarshal,
	Unmarshal: legacyUnmarshal,
	Merge:     legacyMerge,

	// We have no way to tell whether the type's Marshal method
	// supports deterministic serialization or not, but this
	// preserves the v1 implementation's behavior of always
	// calling Marshal methods when present.
	Flags: piface.SupportMarshalDeterministic,
}

func legacyMarshal(in piface.MarshalInput) (piface.MarshalOutput, error) {
	v := in.Message.(unwrapper).protoUnwrap()
	marshaler, ok := v.(legacyMarshaler)
	if !ok {
		return piface.MarshalOutput{}, errors.New("%T does not implement Marshal", v)
	}
	out, err := marshaler.Marshal()
	if in.Buf != nil {
		out = append(in.Buf, out...)
	}
	return piface.MarshalOutput{
		Buf: out,
	}, err
}

func legacyUnmarshal(in piface.UnmarshalInput) (piface.UnmarshalOutput, error) {
	v := in.Message.(unwrapper).protoUnwrap()
	unmarshaler, ok := v.(legacyUnmarshaler)
	if !ok {
		return piface.UnmarshalOutput{}, errors.New("%T does not implement Marshal", v)
	}
	return piface.UnmarshalOutput{}, unmarshaler.Unmarshal(in.Buf)
}

func legacyMerge(in piface.MergeInput) piface.MergeOutput {
	dstv := in.Destination.(unwrapper).protoUnwrap()
	merger, ok := dstv.(legacyMerger)
	if !ok {
		return piface.MergeOutput{}
	}
	merger.Merge(Export{}.ProtoMessageV1Of(in.Source))
	return piface.MergeOutput{Flags: piface.MergeComplete}
}

// aberrantMessageType implements MessageType for all types other than pointer-to-struct.
type aberrantMessageType struct {
	t reflect.Type
}

func (mt aberrantMessageType) New() pref.Message {
	return aberrantMessage{reflect.Zero(mt.t)}
}
func (mt aberrantMessageType) Zero() pref.Message {
	return aberrantMessage{reflect.Zero(mt.t)}
}
func (mt aberrantMessageType) GoType() reflect.Type {
	return mt.t
}
func (mt aberrantMessageType) Descriptor() pref.MessageDescriptor {
	return LegacyLoadMessageDesc(mt.t)
}

// aberrantMessage implements Message for all types other than pointer-to-struct.
//
// When the underlying type implements legacyMarshaler or legacyUnmarshaler,
// the aberrant Message can be marshaled or unmarshaled. Otherwise, there is
// not much that can be done with values of this type.
type aberrantMessage struct {
	v reflect.Value
}

func (m aberrantMessage) ProtoReflect() pref.Message {
	return m
}

func (m aberrantMessage) Descriptor() pref.MessageDescriptor {
	return LegacyLoadMessageDesc(m.v.Type())
}
func (m aberrantMessage) Type() pref.MessageType {
	return aberrantMessageType{m.v.Type()}
}
func (m aberrantMessage) New() pref.Message {
	return aberrantMessage{reflect.Zero(m.v.Type())}
}
func (m aberrantMessage) Interface() pref.ProtoMessage {
	return m
}
func (m aberrantMessage) Range(f func(pref.FieldDescriptor, pref.Value) bool) {
}
func (m aberrantMessage) Has(pref.FieldDescriptor) bool {
	panic("invalid field descriptor")
}
func (m aberrantMessage) Clear(pref.FieldDescriptor) {
	panic("invalid field descriptor")
}
func (m aberrantMessage) Get(pref.FieldDescriptor) pref.Value {
	panic("invalid field descriptor")
}
func (m aberrantMessage) Set(pref.FieldDescriptor, pref.Value) {
	panic("invalid field descriptor")
}
func (m aberrantMessage) Mutable(pref.FieldDescriptor) pref.Value {
	panic("invalid field descriptor")
}
func (m aberrantMessage) NewField(pref.FieldDescriptor) pref.Value {
	panic("invalid field descriptor")
}
func (m aberrantMessage) WhichOneof(pref.OneofDescriptor) pref.FieldDescriptor {
	panic("invalid oneof descriptor")
}
func (m aberrantMessage) GetUnknown() pref.RawFields {
	return nil
}
func (m aberrantMessage) SetUnknown(pref.RawFields) {
	// SetUnknown discards its input on messages which don't support unknown field storage.
}
func (m aberrantMessage) IsValid() bool {
	// An invalid message is a read-only, empty message. Since we don't know anything
	// about the alleged contents of this message, we can't say with confidence that
	// it is invalid in this sense. Therefore, report it as valid.
	return true
}
func (m aberrantMessage) ProtoMethods() *piface.Methods {
	return legacyProtoMethods
}
func (m aberrantMessage) protoUnwrap() interface{} {
	return m.v.Interface()
}