zstd_v04.c 131.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614
/*
 * Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
 * All rights reserved.
 *
 * This source code is licensed under both the BSD-style license (found in the
 * LICENSE file in the root directory of this source tree) and the GPLv2 (found
 * in the COPYING file in the root directory of this source tree).
 * You may select, at your option, one of the above-listed licenses.
 */


 /******************************************
 *  Includes
 ******************************************/
#include <stddef.h>    /* size_t, ptrdiff_t */
#include <string.h>    /* memcpy */

#include "zstd_v04.h"
#include "error_private.h"


/* ******************************************************************
 *   mem.h
 *******************************************************************/
#ifndef MEM_H_MODULE
#define MEM_H_MODULE

#if defined (__cplusplus)
extern "C" {
#endif


/******************************************
*  Compiler-specific
******************************************/
#if defined(_MSC_VER)   /* Visual Studio */
#   include <stdlib.h>  /* _byteswap_ulong */
#   include <intrin.h>  /* _byteswap_* */
#endif
#if defined(__GNUC__)
#  define MEM_STATIC static __attribute__((unused))
#elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
#  define MEM_STATIC static inline
#elif defined(_MSC_VER)
#  define MEM_STATIC static __inline
#else
#  define MEM_STATIC static  /* this version may generate warnings for unused static functions; disable the relevant warning */
#endif


/****************************************************************
*  Basic Types
*****************************************************************/
#if defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
# include <stdint.h>
  typedef  uint8_t BYTE;
  typedef uint16_t U16;
  typedef  int16_t S16;
  typedef uint32_t U32;
  typedef  int32_t S32;
  typedef uint64_t U64;
  typedef  int64_t S64;
#else
  typedef unsigned char       BYTE;
  typedef unsigned short      U16;
  typedef   signed short      S16;
  typedef unsigned int        U32;
  typedef   signed int        S32;
  typedef unsigned long long  U64;
  typedef   signed long long  S64;
#endif


/*-*************************************
*  Debug
***************************************/
#include "debug.h"
#ifndef assert
#  define assert(condition) ((void)0)
#endif


/****************************************************************
*  Memory I/O
*****************************************************************/
/* MEM_FORCE_MEMORY_ACCESS
 * By default, access to unaligned memory is controlled by `memcpy()`, which is safe and portable.
 * Unfortunately, on some target/compiler combinations, the generated assembly is sub-optimal.
 * The below switch allow to select different access method for improved performance.
 * Method 0 (default) : use `memcpy()`. Safe and portable.
 * Method 1 : `__packed` statement. It depends on compiler extension (ie, not portable).
 *            This method is safe if your compiler supports it, and *generally* as fast or faster than `memcpy`.
 * Method 2 : direct access. This method is portable but violate C standard.
 *            It can generate buggy code on targets generating assembly depending on alignment.
 *            But in some circumstances, it's the only known way to get the most performance (ie GCC + ARMv6)
 * See http://fastcompression.blogspot.fr/2015/08/accessing-unaligned-memory.html for details.
 * Prefer these methods in priority order (0 > 1 > 2)
 */
#ifndef MEM_FORCE_MEMORY_ACCESS   /* can be defined externally, on command line for example */
#  if defined(__GNUC__) && ( defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__) )
#    define MEM_FORCE_MEMORY_ACCESS 2
#  elif (defined(__INTEL_COMPILER) && !defined(WIN32)) || \
  (defined(__GNUC__) && ( defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) || defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7S__) ))
#    define MEM_FORCE_MEMORY_ACCESS 1
#  endif
#endif

MEM_STATIC unsigned MEM_32bits(void) { return sizeof(void*)==4; }
MEM_STATIC unsigned MEM_64bits(void) { return sizeof(void*)==8; }

MEM_STATIC unsigned MEM_isLittleEndian(void)
{
    const union { U32 u; BYTE c[4]; } one = { 1 };   /* don't use static : performance detrimental  */
    return one.c[0];
}

#if defined(MEM_FORCE_MEMORY_ACCESS) && (MEM_FORCE_MEMORY_ACCESS==2)

/* violates C standard on structure alignment.
Only use if no other choice to achieve best performance on target platform */
MEM_STATIC U16 MEM_read16(const void* memPtr) { return *(const U16*) memPtr; }
MEM_STATIC U32 MEM_read32(const void* memPtr) { return *(const U32*) memPtr; }
MEM_STATIC U64 MEM_read64(const void* memPtr) { return *(const U64*) memPtr; }

MEM_STATIC void MEM_write16(void* memPtr, U16 value) { *(U16*)memPtr = value; }

#elif defined(MEM_FORCE_MEMORY_ACCESS) && (MEM_FORCE_MEMORY_ACCESS==1)

/* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */
/* currently only defined for gcc and icc */
typedef union { U16 u16; U32 u32; U64 u64; } __attribute__((packed)) unalign;

MEM_STATIC U16 MEM_read16(const void* ptr) { return ((const unalign*)ptr)->u16; }
MEM_STATIC U32 MEM_read32(const void* ptr) { return ((const unalign*)ptr)->u32; }
MEM_STATIC U64 MEM_read64(const void* ptr) { return ((const unalign*)ptr)->u64; }

MEM_STATIC void MEM_write16(void* memPtr, U16 value) { ((unalign*)memPtr)->u16 = value; }

#else

/* default method, safe and standard.
   can sometimes prove slower */

MEM_STATIC U16 MEM_read16(const void* memPtr)
{
    U16 val; memcpy(&val, memPtr, sizeof(val)); return val;
}

MEM_STATIC U32 MEM_read32(const void* memPtr)
{
    U32 val; memcpy(&val, memPtr, sizeof(val)); return val;
}

MEM_STATIC U64 MEM_read64(const void* memPtr)
{
    U64 val; memcpy(&val, memPtr, sizeof(val)); return val;
}

MEM_STATIC void MEM_write16(void* memPtr, U16 value)
{
    memcpy(memPtr, &value, sizeof(value));
}

#endif // MEM_FORCE_MEMORY_ACCESS


MEM_STATIC U16 MEM_readLE16(const void* memPtr)
{
    if (MEM_isLittleEndian())
        return MEM_read16(memPtr);
    else
    {
        const BYTE* p = (const BYTE*)memPtr;
        return (U16)(p[0] + (p[1]<<8));
    }
}

MEM_STATIC void MEM_writeLE16(void* memPtr, U16 val)
{
    if (MEM_isLittleEndian())
    {
        MEM_write16(memPtr, val);
    }
    else
    {
        BYTE* p = (BYTE*)memPtr;
        p[0] = (BYTE)val;
        p[1] = (BYTE)(val>>8);
    }
}

MEM_STATIC U32 MEM_readLE32(const void* memPtr)
{
    if (MEM_isLittleEndian())
        return MEM_read32(memPtr);
    else
    {
        const BYTE* p = (const BYTE*)memPtr;
        return (U32)((U32)p[0] + ((U32)p[1]<<8) + ((U32)p[2]<<16) + ((U32)p[3]<<24));
    }
}


MEM_STATIC U64 MEM_readLE64(const void* memPtr)
{
    if (MEM_isLittleEndian())
        return MEM_read64(memPtr);
    else
    {
        const BYTE* p = (const BYTE*)memPtr;
        return (U64)((U64)p[0] + ((U64)p[1]<<8) + ((U64)p[2]<<16) + ((U64)p[3]<<24)
                     + ((U64)p[4]<<32) + ((U64)p[5]<<40) + ((U64)p[6]<<48) + ((U64)p[7]<<56));
    }
}


MEM_STATIC size_t MEM_readLEST(const void* memPtr)
{
    if (MEM_32bits())
        return (size_t)MEM_readLE32(memPtr);
    else
        return (size_t)MEM_readLE64(memPtr);
}


#if defined (__cplusplus)
}
#endif

#endif /* MEM_H_MODULE */

/*
    zstd - standard compression library
    Header File for static linking only
*/
#ifndef ZSTD_STATIC_H
#define ZSTD_STATIC_H


/* *************************************
*  Types
***************************************/
#define ZSTD_WINDOWLOG_ABSOLUTEMIN 11

/** from faster to stronger */
typedef enum { ZSTD_fast, ZSTD_greedy, ZSTD_lazy, ZSTD_lazy2, ZSTD_btlazy2 } ZSTD_strategy;

typedef struct
{
    U64 srcSize;       /* optional : tells how much bytes are present in the frame. Use 0 if not known. */
    U32 windowLog;     /* largest match distance : larger == more compression, more memory needed during decompression */
    U32 contentLog;    /* full search segment : larger == more compression, slower, more memory (useless for fast) */
    U32 hashLog;       /* dispatch table : larger == more memory, faster */
    U32 searchLog;     /* nb of searches : larger == more compression, slower */
    U32 searchLength;  /* size of matches : larger == faster decompression, sometimes less compression */
    ZSTD_strategy strategy;
} ZSTD_parameters;

typedef ZSTDv04_Dctx ZSTD_DCtx;

/* *************************************
*  Advanced functions
***************************************/
/** ZSTD_decompress_usingDict
*   Same as ZSTD_decompressDCtx, using a Dictionary content as prefix
*   Note : dict can be NULL, in which case, it's equivalent to ZSTD_decompressDCtx() */
static size_t ZSTD_decompress_usingDict(ZSTD_DCtx* ctx,
                                             void* dst, size_t maxDstSize,
                                       const void* src, size_t srcSize,
                                       const void* dict,size_t dictSize);


/* **************************************
*  Streaming functions (direct mode)
****************************************/
static size_t ZSTD_resetDCtx(ZSTD_DCtx* dctx);
static size_t ZSTD_getFrameParams(ZSTD_parameters* params, const void* src, size_t srcSize);
static void   ZSTD_decompress_insertDictionary(ZSTD_DCtx* ctx, const void* src, size_t srcSize);

static size_t ZSTD_nextSrcSizeToDecompress(ZSTD_DCtx* dctx);
static size_t ZSTD_decompressContinue(ZSTD_DCtx* dctx, void* dst, size_t maxDstSize, const void* src, size_t srcSize);

/**
  Streaming decompression, bufferless mode

  A ZSTD_DCtx object is required to track streaming operations.
  Use ZSTD_createDCtx() / ZSTD_freeDCtx() to manage it.
  A ZSTD_DCtx object can be re-used multiple times. Use ZSTD_resetDCtx() to return to fresh status.

  First operation is to retrieve frame parameters, using ZSTD_getFrameParams().
  This function doesn't consume its input. It needs enough input data to properly decode the frame header.
  Objective is to retrieve *params.windowlog, to know minimum amount of memory required during decoding.
  Result : 0 when successful, it means the ZSTD_parameters structure has been filled.
           >0 : means there is not enough data into src. Provides the expected size to successfully decode header.
           errorCode, which can be tested using ZSTD_isError() (For example, if it's not a ZSTD header)

  Then, you can optionally insert a dictionary.
  This operation must mimic the compressor behavior, otherwise decompression will fail or be corrupted.

  Then it's possible to start decompression.
  Use ZSTD_nextSrcSizeToDecompress() and ZSTD_decompressContinue() alternatively.
  ZSTD_nextSrcSizeToDecompress() tells how much bytes to provide as 'srcSize' to ZSTD_decompressContinue().
  ZSTD_decompressContinue() requires this exact amount of bytes, or it will fail.
  ZSTD_decompressContinue() needs previous data blocks during decompression, up to (1 << windowlog).
  They should preferably be located contiguously, prior to current block. Alternatively, a round buffer is also possible.

  @result of ZSTD_decompressContinue() is the number of bytes regenerated within 'dst'.
  It can be zero, which is not an error; it just means ZSTD_decompressContinue() has decoded some header.

  A frame is fully decoded when ZSTD_nextSrcSizeToDecompress() returns zero.
  Context can then be reset to start a new decompression.
*/




#endif  /* ZSTD_STATIC_H */


/*
    zstd_internal - common functions to include
    Header File for include
*/
#ifndef ZSTD_CCOMMON_H_MODULE
#define ZSTD_CCOMMON_H_MODULE

/* *************************************
*  Common macros
***************************************/
#define MIN(a,b) ((a)<(b) ? (a) : (b))
#define MAX(a,b) ((a)>(b) ? (a) : (b))


/* *************************************
*  Common constants
***************************************/
#define ZSTD_MAGICNUMBER 0xFD2FB524   /* v0.4 */

#define KB *(1 <<10)
#define MB *(1 <<20)
#define GB *(1U<<30)

#define BLOCKSIZE (128 KB)                 /* define, for static allocation */

static const size_t ZSTD_blockHeaderSize = 3;
static const size_t ZSTD_frameHeaderSize_min = 5;
#define ZSTD_frameHeaderSize_max 5         /* define, for static allocation */

#define BIT7 128
#define BIT6  64
#define BIT5  32
#define BIT4  16
#define BIT1   2
#define BIT0   1

#define IS_RAW BIT0
#define IS_RLE BIT1

#define MINMATCH 4
#define REPCODE_STARTVALUE 4

#define MLbits   7
#define LLbits   6
#define Offbits  5
#define MaxML  ((1<<MLbits) - 1)
#define MaxLL  ((1<<LLbits) - 1)
#define MaxOff ((1<<Offbits)- 1)
#define MLFSELog   10
#define LLFSELog   10
#define OffFSELog   9
#define MaxSeq MAX(MaxLL, MaxML)

#define MIN_SEQUENCES_SIZE (2 /*seqNb*/ + 2 /*dumps*/ + 3 /*seqTables*/ + 1 /*bitStream*/)
#define MIN_CBLOCK_SIZE (3 /*litCSize*/ + MIN_SEQUENCES_SIZE)

typedef enum { bt_compressed, bt_raw, bt_rle, bt_end } blockType_t;


/* ******************************************
*  Shared functions to include for inlining
********************************************/
static void ZSTD_copy8(void* dst, const void* src) { memcpy(dst, src, 8); }

#define COPY8(d,s) { ZSTD_copy8(d,s); d+=8; s+=8; }

/*! ZSTD_wildcopy : custom version of memcpy(), can copy up to 7-8 bytes too many */
static void ZSTD_wildcopy(void* dst, const void* src, ptrdiff_t length)
{
    const BYTE* ip = (const BYTE*)src;
    BYTE* op = (BYTE*)dst;
    BYTE* const oend = op + length;
    do
        COPY8(op, ip)
    while (op < oend);
}



/* ******************************************************************
   FSE : Finite State Entropy coder
   header file
****************************************************************** */
#ifndef FSE_H
#define FSE_H

#if defined (__cplusplus)
extern "C" {
#endif


/* *****************************************
*  Includes
******************************************/
#include <stddef.h>    /* size_t, ptrdiff_t */


/* *****************************************
*  FSE simple functions
******************************************/
static size_t FSE_decompress(void* dst,  size_t maxDstSize,
                const void* cSrc, size_t cSrcSize);
/*!
FSE_decompress():
    Decompress FSE data from buffer 'cSrc', of size 'cSrcSize',
    into already allocated destination buffer 'dst', of size 'maxDstSize'.
    return : size of regenerated data (<= maxDstSize)
             or an error code, which can be tested using FSE_isError()

    ** Important ** : FSE_decompress() doesn't decompress non-compressible nor RLE data !!!
    Why ? : making this distinction requires a header.
    Header management is intentionally delegated to the user layer, which can better manage special cases.
*/


/* *****************************************
*  Tool functions
******************************************/
/* Error Management */
static unsigned    FSE_isError(size_t code);        /* tells if a return value is an error code */



/* *****************************************
*  FSE detailed API
******************************************/
/*!
FSE_compress() does the following:
1. count symbol occurrence from source[] into table count[]
2. normalize counters so that sum(count[]) == Power_of_2 (2^tableLog)
3. save normalized counters to memory buffer using writeNCount()
4. build encoding table 'CTable' from normalized counters
5. encode the data stream using encoding table 'CTable'

FSE_decompress() does the following:
1. read normalized counters with readNCount()
2. build decoding table 'DTable' from normalized counters
3. decode the data stream using decoding table 'DTable'

The following API allows targeting specific sub-functions for advanced tasks.
For example, it's possible to compress several blocks using the same 'CTable',
or to save and provide normalized distribution using external method.
*/


/* *** DECOMPRESSION *** */

/*!
FSE_readNCount():
   Read compactly saved 'normalizedCounter' from 'rBuffer'.
   return : size read from 'rBuffer'
            or an errorCode, which can be tested using FSE_isError()
            maxSymbolValuePtr[0] and tableLogPtr[0] will also be updated with their respective values */
static  size_t FSE_readNCount (short* normalizedCounter, unsigned* maxSymbolValuePtr, unsigned* tableLogPtr, const void* rBuffer, size_t rBuffSize);

/*!
Constructor and Destructor of type FSE_DTable
    Note that its size depends on 'tableLog' */
typedef unsigned FSE_DTable;   /* don't allocate that. It's just a way to be more restrictive than void* */

/*!
FSE_buildDTable():
   Builds 'dt', which must be already allocated, using FSE_createDTable()
   return : 0,
            or an errorCode, which can be tested using FSE_isError() */
static size_t FSE_buildDTable ( FSE_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog);

/*!
FSE_decompress_usingDTable():
   Decompress compressed source 'cSrc' of size 'cSrcSize' using 'dt'
   into 'dst' which must be already allocated.
   return : size of regenerated data (necessarily <= maxDstSize)
            or an errorCode, which can be tested using FSE_isError() */
static  size_t FSE_decompress_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const FSE_DTable* dt);

/*!
Tutorial :
----------
(Note : these functions only decompress FSE-compressed blocks.
 If block is uncompressed, use memcpy() instead
 If block is a single repeated byte, use memset() instead )

The first step is to obtain the normalized frequencies of symbols.
This can be performed by FSE_readNCount() if it was saved using FSE_writeNCount().
'normalizedCounter' must be already allocated, and have at least 'maxSymbolValuePtr[0]+1' cells of signed short.
In practice, that means it's necessary to know 'maxSymbolValue' beforehand,
or size the table to handle worst case situations (typically 256).
FSE_readNCount() will provide 'tableLog' and 'maxSymbolValue'.
The result of FSE_readNCount() is the number of bytes read from 'rBuffer'.
Note that 'rBufferSize' must be at least 4 bytes, even if useful information is less than that.
If there is an error, the function will return an error code, which can be tested using FSE_isError().

The next step is to build the decompression tables 'FSE_DTable' from 'normalizedCounter'.
This is performed by the function FSE_buildDTable().
The space required by 'FSE_DTable' must be already allocated using FSE_createDTable().
If there is an error, the function will return an error code, which can be tested using FSE_isError().

'FSE_DTable' can then be used to decompress 'cSrc', with FSE_decompress_usingDTable().
'cSrcSize' must be strictly correct, otherwise decompression will fail.
FSE_decompress_usingDTable() result will tell how many bytes were regenerated (<=maxDstSize).
If there is an error, the function will return an error code, which can be tested using FSE_isError(). (ex: dst buffer too small)
*/


#if defined (__cplusplus)
}
#endif

#endif  /* FSE_H */


/* ******************************************************************
   bitstream
   Part of NewGen Entropy library
   header file (to include)
   Copyright (C) 2013-2015, Yann Collet.

   BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)

   Redistribution and use in source and binary forms, with or without
   modification, are permitted provided that the following conditions are
   met:

       * Redistributions of source code must retain the above copyright
   notice, this list of conditions and the following disclaimer.
       * Redistributions in binary form must reproduce the above
   copyright notice, this list of conditions and the following disclaimer
   in the documentation and/or other materials provided with the
   distribution.

   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

   You can contact the author at :
   - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
   - Public forum : https://groups.google.com/forum/#!forum/lz4c
****************************************************************** */
#ifndef BITSTREAM_H_MODULE
#define BITSTREAM_H_MODULE

#if defined (__cplusplus)
extern "C" {
#endif


/*
*  This API consists of small unitary functions, which highly benefit from being inlined.
*  Since link-time-optimization is not available for all compilers,
*  these functions are defined into a .h to be included.
*/

/**********************************************
*  bitStream decompression API (read backward)
**********************************************/
typedef struct
{
    size_t   bitContainer;
    unsigned bitsConsumed;
    const char* ptr;
    const char* start;
} BIT_DStream_t;

typedef enum { BIT_DStream_unfinished = 0,
               BIT_DStream_endOfBuffer = 1,
               BIT_DStream_completed = 2,
               BIT_DStream_overflow = 3 } BIT_DStream_status;  /* result of BIT_reloadDStream() */
               /* 1,2,4,8 would be better for bitmap combinations, but slows down performance a bit ... :( */

MEM_STATIC size_t   BIT_initDStream(BIT_DStream_t* bitD, const void* srcBuffer, size_t srcSize);
MEM_STATIC size_t   BIT_readBits(BIT_DStream_t* bitD, unsigned nbBits);
MEM_STATIC BIT_DStream_status BIT_reloadDStream(BIT_DStream_t* bitD);
MEM_STATIC unsigned BIT_endOfDStream(const BIT_DStream_t* bitD);




/******************************************
*  unsafe API
******************************************/
MEM_STATIC size_t BIT_readBitsFast(BIT_DStream_t* bitD, unsigned nbBits);
/* faster, but works only if nbBits >= 1 */



/****************************************************************
*  Helper functions
****************************************************************/
MEM_STATIC unsigned BIT_highbit32 (U32 val)
{
#   if defined(_MSC_VER)   /* Visual */
    unsigned long r=0;
    _BitScanReverse ( &r, val );
    return (unsigned) r;
#   elif defined(__GNUC__) && (__GNUC__ >= 3)   /* Use GCC Intrinsic */
    return 31 - __builtin_clz (val);
#   else   /* Software version */
    static const unsigned DeBruijnClz[32] = { 0, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18, 22, 25, 3, 30, 8, 12, 20, 28, 15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31 };
    U32 v = val;
    unsigned r;
    v |= v >> 1;
    v |= v >> 2;
    v |= v >> 4;
    v |= v >> 8;
    v |= v >> 16;
    r = DeBruijnClz[ (U32) (v * 0x07C4ACDDU) >> 27];
    return r;
#   endif
}


/**********************************************************
* bitStream decoding
**********************************************************/

/*!BIT_initDStream
*  Initialize a BIT_DStream_t.
*  @bitD : a pointer to an already allocated BIT_DStream_t structure
*  @srcBuffer must point at the beginning of a bitStream
*  @srcSize must be the exact size of the bitStream
*  @result : size of stream (== srcSize) or an errorCode if a problem is detected
*/
MEM_STATIC size_t BIT_initDStream(BIT_DStream_t* bitD, const void* srcBuffer, size_t srcSize)
{
    if (srcSize < 1) { memset(bitD, 0, sizeof(*bitD)); return ERROR(srcSize_wrong); }

    if (srcSize >=  sizeof(size_t))   /* normal case */
    {
        U32 contain32;
        bitD->start = (const char*)srcBuffer;
        bitD->ptr   = (const char*)srcBuffer + srcSize - sizeof(size_t);
        bitD->bitContainer = MEM_readLEST(bitD->ptr);
        contain32 = ((const BYTE*)srcBuffer)[srcSize-1];
        if (contain32 == 0) return ERROR(GENERIC);   /* endMark not present */
        bitD->bitsConsumed = 8 - BIT_highbit32(contain32);
    }
    else
    {
        U32 contain32;
        bitD->start = (const char*)srcBuffer;
        bitD->ptr   = bitD->start;
        bitD->bitContainer = *(const BYTE*)(bitD->start);
        switch(srcSize)
        {
            case 7: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[6]) << (sizeof(size_t)*8 - 16);/* fall-through */
            case 6: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[5]) << (sizeof(size_t)*8 - 24);/* fall-through */
            case 5: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[4]) << (sizeof(size_t)*8 - 32);/* fall-through */
            case 4: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[3]) << 24; /* fall-through */
            case 3: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[2]) << 16; /* fall-through */
            case 2: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[1]) <<  8; /* fall-through */
            default: break;
        }
        contain32 = ((const BYTE*)srcBuffer)[srcSize-1];
        if (contain32 == 0) return ERROR(GENERIC);   /* endMark not present */
        bitD->bitsConsumed = 8 - BIT_highbit32(contain32);
        bitD->bitsConsumed += (U32)(sizeof(size_t) - srcSize)*8;
    }

    return srcSize;
}

MEM_STATIC size_t BIT_lookBits(BIT_DStream_t* bitD, U32 nbBits)
{
    const U32 bitMask = sizeof(bitD->bitContainer)*8 - 1;
    return ((bitD->bitContainer << (bitD->bitsConsumed & bitMask)) >> 1) >> ((bitMask-nbBits) & bitMask);
}

/*! BIT_lookBitsFast :
*   unsafe version; only works only if nbBits >= 1 */
MEM_STATIC size_t BIT_lookBitsFast(BIT_DStream_t* bitD, U32 nbBits)
{
    const U32 bitMask = sizeof(bitD->bitContainer)*8 - 1;
    return (bitD->bitContainer << (bitD->bitsConsumed & bitMask)) >> (((bitMask+1)-nbBits) & bitMask);
}

MEM_STATIC void BIT_skipBits(BIT_DStream_t* bitD, U32 nbBits)
{
    bitD->bitsConsumed += nbBits;
}

MEM_STATIC size_t BIT_readBits(BIT_DStream_t* bitD, U32 nbBits)
{
    size_t value = BIT_lookBits(bitD, nbBits);
    BIT_skipBits(bitD, nbBits);
    return value;
}

/*!BIT_readBitsFast :
*  unsafe version; only works only if nbBits >= 1 */
MEM_STATIC size_t BIT_readBitsFast(BIT_DStream_t* bitD, U32 nbBits)
{
    size_t value = BIT_lookBitsFast(bitD, nbBits);
    BIT_skipBits(bitD, nbBits);
    return value;
}

MEM_STATIC BIT_DStream_status BIT_reloadDStream(BIT_DStream_t* bitD)
{
    if (bitD->bitsConsumed > (sizeof(bitD->bitContainer)*8))  /* should never happen */
        return BIT_DStream_overflow;

    if (bitD->ptr >= bitD->start + sizeof(bitD->bitContainer))
    {
        bitD->ptr -= bitD->bitsConsumed >> 3;
        bitD->bitsConsumed &= 7;
        bitD->bitContainer = MEM_readLEST(bitD->ptr);
        return BIT_DStream_unfinished;
    }
    if (bitD->ptr == bitD->start)
    {
        if (bitD->bitsConsumed < sizeof(bitD->bitContainer)*8) return BIT_DStream_endOfBuffer;
        return BIT_DStream_completed;
    }
    {
        U32 nbBytes = bitD->bitsConsumed >> 3;
        BIT_DStream_status result = BIT_DStream_unfinished;
        if (bitD->ptr - nbBytes < bitD->start)
        {
            nbBytes = (U32)(bitD->ptr - bitD->start);  /* ptr > start */
            result = BIT_DStream_endOfBuffer;
        }
        bitD->ptr -= nbBytes;
        bitD->bitsConsumed -= nbBytes*8;
        bitD->bitContainer = MEM_readLEST(bitD->ptr);   /* reminder : srcSize > sizeof(bitD) */
        return result;
    }
}

/*! BIT_endOfDStream
*   @return Tells if DStream has reached its exact end
*/
MEM_STATIC unsigned BIT_endOfDStream(const BIT_DStream_t* DStream)
{
    return ((DStream->ptr == DStream->start) && (DStream->bitsConsumed == sizeof(DStream->bitContainer)*8));
}

#if defined (__cplusplus)
}
#endif

#endif /* BITSTREAM_H_MODULE */



/* ******************************************************************
   FSE : Finite State Entropy coder
   header file for static linking (only)
   Copyright (C) 2013-2015, Yann Collet

   BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)

   Redistribution and use in source and binary forms, with or without
   modification, are permitted provided that the following conditions are
   met:

       * Redistributions of source code must retain the above copyright
   notice, this list of conditions and the following disclaimer.
       * Redistributions in binary form must reproduce the above
   copyright notice, this list of conditions and the following disclaimer
   in the documentation and/or other materials provided with the
   distribution.

   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

   You can contact the author at :
   - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
   - Public forum : https://groups.google.com/forum/#!forum/lz4c
****************************************************************** */
#ifndef FSE_STATIC_H
#define FSE_STATIC_H

#if defined (__cplusplus)
extern "C" {
#endif


/* *****************************************
*  Static allocation
*******************************************/
/* FSE buffer bounds */
#define FSE_NCOUNTBOUND 512
#define FSE_BLOCKBOUND(size) (size + (size>>7))
#define FSE_COMPRESSBOUND(size) (FSE_NCOUNTBOUND + FSE_BLOCKBOUND(size))   /* Macro version, useful for static allocation */

/* It is possible to statically allocate FSE CTable/DTable as a table of unsigned using below macros */
#define FSE_CTABLE_SIZE_U32(maxTableLog, maxSymbolValue)   (1 + (1<<(maxTableLog-1)) + ((maxSymbolValue+1)*2))
#define FSE_DTABLE_SIZE_U32(maxTableLog)                   (1 + (1<<maxTableLog))


/* *****************************************
*  FSE advanced API
*******************************************/
static size_t FSE_buildDTable_raw (FSE_DTable* dt, unsigned nbBits);
/* build a fake FSE_DTable, designed to read an uncompressed bitstream where each symbol uses nbBits */

static size_t FSE_buildDTable_rle (FSE_DTable* dt, unsigned char symbolValue);
/* build a fake FSE_DTable, designed to always generate the same symbolValue */



/* *****************************************
*  FSE symbol decompression API
*******************************************/
typedef struct
{
    size_t      state;
    const void* table;   /* precise table may vary, depending on U16 */
} FSE_DState_t;


static void     FSE_initDState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD, const FSE_DTable* dt);

static unsigned char FSE_decodeSymbol(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD);

static unsigned FSE_endOfDState(const FSE_DState_t* DStatePtr);


/* *****************************************
*  FSE unsafe API
*******************************************/
static unsigned char FSE_decodeSymbolFast(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD);
/* faster, but works only if nbBits is always >= 1 (otherwise, result will be corrupted) */


/* *****************************************
*  Implementation of inlined functions
*******************************************/
/* decompression */

typedef struct {
    U16 tableLog;
    U16 fastMode;
} FSE_DTableHeader;   /* sizeof U32 */

typedef struct
{
    unsigned short newState;
    unsigned char  symbol;
    unsigned char  nbBits;
} FSE_decode_t;   /* size == U32 */

MEM_STATIC void FSE_initDState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD, const FSE_DTable* dt)
{
    FSE_DTableHeader DTableH;
    memcpy(&DTableH, dt, sizeof(DTableH));
    DStatePtr->state = BIT_readBits(bitD, DTableH.tableLog);
    BIT_reloadDStream(bitD);
    DStatePtr->table = dt + 1;
}

MEM_STATIC BYTE FSE_decodeSymbol(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD)
{
    const FSE_decode_t DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
    const U32  nbBits = DInfo.nbBits;
    BYTE symbol = DInfo.symbol;
    size_t lowBits = BIT_readBits(bitD, nbBits);

    DStatePtr->state = DInfo.newState + lowBits;
    return symbol;
}

MEM_STATIC BYTE FSE_decodeSymbolFast(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD)
{
    const FSE_decode_t DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
    const U32 nbBits = DInfo.nbBits;
    BYTE symbol = DInfo.symbol;
    size_t lowBits = BIT_readBitsFast(bitD, nbBits);

    DStatePtr->state = DInfo.newState + lowBits;
    return symbol;
}

MEM_STATIC unsigned FSE_endOfDState(const FSE_DState_t* DStatePtr)
{
    return DStatePtr->state == 0;
}


#if defined (__cplusplus)
}
#endif

#endif  /* FSE_STATIC_H */

/* ******************************************************************
   FSE : Finite State Entropy coder
   Copyright (C) 2013-2015, Yann Collet.

   BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)

   Redistribution and use in source and binary forms, with or without
   modification, are permitted provided that the following conditions are
   met:

       * Redistributions of source code must retain the above copyright
   notice, this list of conditions and the following disclaimer.
       * Redistributions in binary form must reproduce the above
   copyright notice, this list of conditions and the following disclaimer
   in the documentation and/or other materials provided with the
   distribution.

   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

    You can contact the author at :
    - FSE source repository : https://github.com/Cyan4973/FiniteStateEntropy
    - Public forum : https://groups.google.com/forum/#!forum/lz4c
****************************************************************** */

#ifndef FSE_COMMONDEFS_ONLY

/* **************************************************************
*  Tuning parameters
****************************************************************/
/*!MEMORY_USAGE :
*  Memory usage formula : N->2^N Bytes (examples : 10 -> 1KB; 12 -> 4KB ; 16 -> 64KB; 20 -> 1MB; etc.)
*  Increasing memory usage improves compression ratio
*  Reduced memory usage can improve speed, due to cache effect
*  Recommended max value is 14, for 16KB, which nicely fits into Intel x86 L1 cache */
#define FSE_MAX_MEMORY_USAGE 14
#define FSE_DEFAULT_MEMORY_USAGE 13

/*!FSE_MAX_SYMBOL_VALUE :
*  Maximum symbol value authorized.
*  Required for proper stack allocation */
#define FSE_MAX_SYMBOL_VALUE 255


/* **************************************************************
*  template functions type & suffix
****************************************************************/
#define FSE_FUNCTION_TYPE BYTE
#define FSE_FUNCTION_EXTENSION
#define FSE_DECODE_TYPE FSE_decode_t


#endif   /* !FSE_COMMONDEFS_ONLY */

/* **************************************************************
*  Compiler specifics
****************************************************************/
#ifdef _MSC_VER    /* Visual Studio */
#  define FORCE_INLINE static __forceinline
#  include <intrin.h>                    /* For Visual 2005 */
#  pragma warning(disable : 4127)        /* disable: C4127: conditional expression is constant */
#  pragma warning(disable : 4214)        /* disable: C4214: non-int bitfields */
#else
#  if defined (__cplusplus) || defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L   /* C99 */
#    ifdef __GNUC__
#      define FORCE_INLINE static inline __attribute__((always_inline))
#    else
#      define FORCE_INLINE static inline
#    endif
#  else
#    define FORCE_INLINE static
#  endif /* __STDC_VERSION__ */
#endif


/* **************************************************************
*  Dependencies
****************************************************************/
#include <stdlib.h>     /* malloc, free, qsort */
#include <string.h>     /* memcpy, memset */
#include <stdio.h>      /* printf (debug) */


/* ***************************************************************
*  Constants
*****************************************************************/
#define FSE_MAX_TABLELOG  (FSE_MAX_MEMORY_USAGE-2)
#define FSE_MAX_TABLESIZE (1U<<FSE_MAX_TABLELOG)
#define FSE_MAXTABLESIZE_MASK (FSE_MAX_TABLESIZE-1)
#define FSE_DEFAULT_TABLELOG (FSE_DEFAULT_MEMORY_USAGE-2)
#define FSE_MIN_TABLELOG 5

#define FSE_TABLELOG_ABSOLUTE_MAX 15
#if FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX
#error "FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX is not supported"
#endif


/* **************************************************************
*  Error Management
****************************************************************/
#define FSE_STATIC_ASSERT(c) { enum { FSE_static_assert = 1/(int)(!!(c)) }; }   /* use only *after* variable declarations */


/* **************************************************************
*  Complex types
****************************************************************/
typedef U32 DTable_max_t[FSE_DTABLE_SIZE_U32(FSE_MAX_TABLELOG)];


/*-**************************************************************
*  Templates
****************************************************************/
/*
  designed to be included
  for type-specific functions (template emulation in C)
  Objective is to write these functions only once, for improved maintenance
*/

/* safety checks */
#ifndef FSE_FUNCTION_EXTENSION
#  error "FSE_FUNCTION_EXTENSION must be defined"
#endif
#ifndef FSE_FUNCTION_TYPE
#  error "FSE_FUNCTION_TYPE must be defined"
#endif

/* Function names */
#define FSE_CAT(X,Y) X##Y
#define FSE_FUNCTION_NAME(X,Y) FSE_CAT(X,Y)
#define FSE_TYPE_NAME(X,Y) FSE_CAT(X,Y)

static U32 FSE_tableStep(U32 tableSize) { return (tableSize>>1) + (tableSize>>3) + 3; }


static size_t FSE_buildDTable(FSE_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog)
{
    FSE_DTableHeader DTableH;
    void* const tdPtr = dt+1;   /* because dt is unsigned, 32-bits aligned on 32-bits */
    FSE_DECODE_TYPE* const tableDecode = (FSE_DECODE_TYPE*) (tdPtr);
    const U32 tableSize = 1 << tableLog;
    const U32 tableMask = tableSize-1;
    const U32 step = FSE_tableStep(tableSize);
    U16 symbolNext[FSE_MAX_SYMBOL_VALUE+1];
    U32 position = 0;
    U32 highThreshold = tableSize-1;
    const S16 largeLimit= (S16)(1 << (tableLog-1));
    U32 noLarge = 1;
    U32 s;

    /* Sanity Checks */
    if (maxSymbolValue > FSE_MAX_SYMBOL_VALUE) return ERROR(maxSymbolValue_tooLarge);
    if (tableLog > FSE_MAX_TABLELOG) return ERROR(tableLog_tooLarge);

    /* Init, lay down lowprob symbols */
    memset(tableDecode, 0, sizeof(FSE_DECODE_TYPE) * (maxSymbolValue+1) );   /* useless init, but keep static analyzer happy, and we don't need to performance optimize legacy decoders */
    DTableH.tableLog = (U16)tableLog;
    for (s=0; s<=maxSymbolValue; s++)
    {
        if (normalizedCounter[s]==-1)
        {
            tableDecode[highThreshold--].symbol = (FSE_FUNCTION_TYPE)s;
            symbolNext[s] = 1;
        }
        else
        {
            if (normalizedCounter[s] >= largeLimit) noLarge=0;
            symbolNext[s] = normalizedCounter[s];
        }
    }

    /* Spread symbols */
    for (s=0; s<=maxSymbolValue; s++)
    {
        int i;
        for (i=0; i<normalizedCounter[s]; i++)
        {
            tableDecode[position].symbol = (FSE_FUNCTION_TYPE)s;
            position = (position + step) & tableMask;
            while (position > highThreshold) position = (position + step) & tableMask;   /* lowprob area */
        }
    }

    if (position!=0) return ERROR(GENERIC);   /* position must reach all cells once, otherwise normalizedCounter is incorrect */

    /* Build Decoding table */
    {
        U32 i;
        for (i=0; i<tableSize; i++)
        {
            FSE_FUNCTION_TYPE symbol = (FSE_FUNCTION_TYPE)(tableDecode[i].symbol);
            U16 nextState = symbolNext[symbol]++;
            tableDecode[i].nbBits = (BYTE) (tableLog - BIT_highbit32 ((U32)nextState) );
            tableDecode[i].newState = (U16) ( (nextState << tableDecode[i].nbBits) - tableSize);
        }
    }

    DTableH.fastMode = (U16)noLarge;
    memcpy(dt, &DTableH, sizeof(DTableH));
    return 0;
}


#ifndef FSE_COMMONDEFS_ONLY
/******************************************
*  FSE helper functions
******************************************/
static unsigned FSE_isError(size_t code) { return ERR_isError(code); }


/****************************************************************
*  FSE NCount encoding-decoding
****************************************************************/
static short FSE_abs(short a)
{
    return a<0 ? -a : a;
}

static size_t FSE_readNCount (short* normalizedCounter, unsigned* maxSVPtr, unsigned* tableLogPtr,
                 const void* headerBuffer, size_t hbSize)
{
    const BYTE* const istart = (const BYTE*) headerBuffer;
    const BYTE* const iend = istart + hbSize;
    const BYTE* ip = istart;
    int nbBits;
    int remaining;
    int threshold;
    U32 bitStream;
    int bitCount;
    unsigned charnum = 0;
    int previous0 = 0;

    if (hbSize < 4) return ERROR(srcSize_wrong);
    bitStream = MEM_readLE32(ip);
    nbBits = (bitStream & 0xF) + FSE_MIN_TABLELOG;   /* extract tableLog */
    if (nbBits > FSE_TABLELOG_ABSOLUTE_MAX) return ERROR(tableLog_tooLarge);
    bitStream >>= 4;
    bitCount = 4;
    *tableLogPtr = nbBits;
    remaining = (1<<nbBits)+1;
    threshold = 1<<nbBits;
    nbBits++;

    while ((remaining>1) && (charnum<=*maxSVPtr))
    {
        if (previous0)
        {
            unsigned n0 = charnum;
            while ((bitStream & 0xFFFF) == 0xFFFF)
            {
                n0+=24;
                if (ip < iend-5)
                {
                    ip+=2;
                    bitStream = MEM_readLE32(ip) >> bitCount;
                }
                else
                {
                    bitStream >>= 16;
                    bitCount+=16;
                }
            }
            while ((bitStream & 3) == 3)
            {
                n0+=3;
                bitStream>>=2;
                bitCount+=2;
            }
            n0 += bitStream & 3;
            bitCount += 2;
            if (n0 > *maxSVPtr) return ERROR(maxSymbolValue_tooSmall);
            while (charnum < n0) normalizedCounter[charnum++] = 0;
            if ((ip <= iend-7) || (ip + (bitCount>>3) <= iend-4))
            {
                ip += bitCount>>3;
                bitCount &= 7;
                bitStream = MEM_readLE32(ip) >> bitCount;
            }
            else
                bitStream >>= 2;
        }
        {
            const short max = (short)((2*threshold-1)-remaining);
            short count;

            if ((bitStream & (threshold-1)) < (U32)max)
            {
                count = (short)(bitStream & (threshold-1));
                bitCount   += nbBits-1;
            }
            else
            {
                count = (short)(bitStream & (2*threshold-1));
                if (count >= threshold) count -= max;
                bitCount   += nbBits;
            }

            count--;   /* extra accuracy */
            remaining -= FSE_abs(count);
            normalizedCounter[charnum++] = count;
            previous0 = !count;
            while (remaining < threshold)
            {
                nbBits--;
                threshold >>= 1;
            }

            {
                if ((ip <= iend-7) || (ip + (bitCount>>3) <= iend-4))
                {
                    ip += bitCount>>3;
                    bitCount &= 7;
                }
                else
                {
                    bitCount -= (int)(8 * (iend - 4 - ip));
                    ip = iend - 4;
                }
                bitStream = MEM_readLE32(ip) >> (bitCount & 31);
            }
        }
    }
    if (remaining != 1) return ERROR(GENERIC);
    *maxSVPtr = charnum-1;

    ip += (bitCount+7)>>3;
    if ((size_t)(ip-istart) > hbSize) return ERROR(srcSize_wrong);
    return ip-istart;
}


/*********************************************************
*  Decompression (Byte symbols)
*********************************************************/
static size_t FSE_buildDTable_rle (FSE_DTable* dt, BYTE symbolValue)
{
    void* ptr = dt;
    FSE_DTableHeader* const DTableH = (FSE_DTableHeader*)ptr;
    void* dPtr = dt + 1;
    FSE_decode_t* const cell = (FSE_decode_t*)dPtr;

    DTableH->tableLog = 0;
    DTableH->fastMode = 0;

    cell->newState = 0;
    cell->symbol = symbolValue;
    cell->nbBits = 0;

    return 0;
}


static size_t FSE_buildDTable_raw (FSE_DTable* dt, unsigned nbBits)
{
    void* ptr = dt;
    FSE_DTableHeader* const DTableH = (FSE_DTableHeader*)ptr;
    void* dPtr = dt + 1;
    FSE_decode_t* const dinfo = (FSE_decode_t*)dPtr;
    const unsigned tableSize = 1 << nbBits;
    const unsigned tableMask = tableSize - 1;
    const unsigned maxSymbolValue = tableMask;
    unsigned s;

    /* Sanity checks */
    if (nbBits < 1) return ERROR(GENERIC);         /* min size */

    /* Build Decoding Table */
    DTableH->tableLog = (U16)nbBits;
    DTableH->fastMode = 1;
    for (s=0; s<=maxSymbolValue; s++)
    {
        dinfo[s].newState = 0;
        dinfo[s].symbol = (BYTE)s;
        dinfo[s].nbBits = (BYTE)nbBits;
    }

    return 0;
}

FORCE_INLINE size_t FSE_decompress_usingDTable_generic(
          void* dst, size_t maxDstSize,
    const void* cSrc, size_t cSrcSize,
    const FSE_DTable* dt, const unsigned fast)
{
    BYTE* const ostart = (BYTE*) dst;
    BYTE* op = ostart;
    BYTE* const omax = op + maxDstSize;
    BYTE* const olimit = omax-3;

    BIT_DStream_t bitD;
    FSE_DState_t state1;
    FSE_DState_t state2;
    size_t errorCode;

    /* Init */
    errorCode = BIT_initDStream(&bitD, cSrc, cSrcSize);   /* replaced last arg by maxCompressed Size */
    if (FSE_isError(errorCode)) return errorCode;

    FSE_initDState(&state1, &bitD, dt);
    FSE_initDState(&state2, &bitD, dt);

#define FSE_GETSYMBOL(statePtr) fast ? FSE_decodeSymbolFast(statePtr, &bitD) : FSE_decodeSymbol(statePtr, &bitD)

    /* 4 symbols per loop */
    for ( ; (BIT_reloadDStream(&bitD)==BIT_DStream_unfinished) && (op<olimit) ; op+=4)
    {
        op[0] = FSE_GETSYMBOL(&state1);

        if (FSE_MAX_TABLELOG*2+7 > sizeof(bitD.bitContainer)*8)    /* This test must be static */
            BIT_reloadDStream(&bitD);

        op[1] = FSE_GETSYMBOL(&state2);

        if (FSE_MAX_TABLELOG*4+7 > sizeof(bitD.bitContainer)*8)    /* This test must be static */
            { if (BIT_reloadDStream(&bitD) > BIT_DStream_unfinished) { op+=2; break; } }

        op[2] = FSE_GETSYMBOL(&state1);

        if (FSE_MAX_TABLELOG*2+7 > sizeof(bitD.bitContainer)*8)    /* This test must be static */
            BIT_reloadDStream(&bitD);

        op[3] = FSE_GETSYMBOL(&state2);
    }

    /* tail */
    /* note : BIT_reloadDStream(&bitD) >= FSE_DStream_partiallyFilled; Ends at exactly BIT_DStream_completed */
    while (1)
    {
        if ( (BIT_reloadDStream(&bitD)>BIT_DStream_completed) || (op==omax) || (BIT_endOfDStream(&bitD) && (fast || FSE_endOfDState(&state1))) )
            break;

        *op++ = FSE_GETSYMBOL(&state1);

        if ( (BIT_reloadDStream(&bitD)>BIT_DStream_completed) || (op==omax) || (BIT_endOfDStream(&bitD) && (fast || FSE_endOfDState(&state2))) )
            break;

        *op++ = FSE_GETSYMBOL(&state2);
    }

    /* end ? */
    if (BIT_endOfDStream(&bitD) && FSE_endOfDState(&state1) && FSE_endOfDState(&state2))
        return op-ostart;

    if (op==omax) return ERROR(dstSize_tooSmall);   /* dst buffer is full, but cSrc unfinished */

    return ERROR(corruption_detected);
}


static size_t FSE_decompress_usingDTable(void* dst, size_t originalSize,
                            const void* cSrc, size_t cSrcSize,
                            const FSE_DTable* dt)
{
    FSE_DTableHeader DTableH;
    U32 fastMode;

    memcpy(&DTableH, dt, sizeof(DTableH));
    fastMode = DTableH.fastMode;

    /* select fast mode (static) */
    if (fastMode) return FSE_decompress_usingDTable_generic(dst, originalSize, cSrc, cSrcSize, dt, 1);
    return FSE_decompress_usingDTable_generic(dst, originalSize, cSrc, cSrcSize, dt, 0);
}


static size_t FSE_decompress(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize)
{
    const BYTE* const istart = (const BYTE*)cSrc;
    const BYTE* ip = istart;
    short counting[FSE_MAX_SYMBOL_VALUE+1];
    DTable_max_t dt;   /* Static analyzer seems unable to understand this table will be properly initialized later */
    unsigned tableLog;
    unsigned maxSymbolValue = FSE_MAX_SYMBOL_VALUE;
    size_t errorCode;

    if (cSrcSize<2) return ERROR(srcSize_wrong);   /* too small input size */

    /* normal FSE decoding mode */
    errorCode = FSE_readNCount (counting, &maxSymbolValue, &tableLog, istart, cSrcSize);
    if (FSE_isError(errorCode)) return errorCode;
    if (errorCode >= cSrcSize) return ERROR(srcSize_wrong);   /* too small input size */
    ip += errorCode;
    cSrcSize -= errorCode;

    errorCode = FSE_buildDTable (dt, counting, maxSymbolValue, tableLog);
    if (FSE_isError(errorCode)) return errorCode;

    /* always return, even if it is an error code */
    return FSE_decompress_usingDTable (dst, maxDstSize, ip, cSrcSize, dt);
}



#endif   /* FSE_COMMONDEFS_ONLY */


/* ******************************************************************
   Huff0 : Huffman coder, part of New Generation Entropy library
   header file
   Copyright (C) 2013-2015, Yann Collet.

   BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)

   Redistribution and use in source and binary forms, with or without
   modification, are permitted provided that the following conditions are
   met:

       * Redistributions of source code must retain the above copyright
   notice, this list of conditions and the following disclaimer.
       * Redistributions in binary form must reproduce the above
   copyright notice, this list of conditions and the following disclaimer
   in the documentation and/or other materials provided with the
   distribution.

   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

   You can contact the author at :
   - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
   - Public forum : https://groups.google.com/forum/#!forum/lz4c
****************************************************************** */
#ifndef HUFF0_H
#define HUFF0_H

#if defined (__cplusplus)
extern "C" {
#endif


/* ****************************************
*  Dependency
******************************************/
#include <stddef.h>    /* size_t */


/* ****************************************
*  Huff0 simple functions
******************************************/
static size_t HUF_decompress(void* dst,  size_t dstSize,
                const void* cSrc, size_t cSrcSize);
/*!
HUF_decompress():
    Decompress Huff0 data from buffer 'cSrc', of size 'cSrcSize',
    into already allocated destination buffer 'dst', of size 'dstSize'.
    'dstSize' must be the exact size of original (uncompressed) data.
    Note : in contrast with FSE, HUF_decompress can regenerate RLE (cSrcSize==1) and uncompressed (cSrcSize==dstSize) data, because it knows size to regenerate.
    @return : size of regenerated data (== dstSize)
              or an error code, which can be tested using HUF_isError()
*/


/* ****************************************
*  Tool functions
******************************************/
/* Error Management */
static unsigned    HUF_isError(size_t code);        /* tells if a return value is an error code */


#if defined (__cplusplus)
}
#endif

#endif   /* HUFF0_H */


/* ******************************************************************
   Huff0 : Huffman coder, part of New Generation Entropy library
   header file for static linking (only)
   Copyright (C) 2013-2015, Yann Collet

   BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)

   Redistribution and use in source and binary forms, with or without
   modification, are permitted provided that the following conditions are
   met:

       * Redistributions of source code must retain the above copyright
   notice, this list of conditions and the following disclaimer.
       * Redistributions in binary form must reproduce the above
   copyright notice, this list of conditions and the following disclaimer
   in the documentation and/or other materials provided with the
   distribution.

   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

   You can contact the author at :
   - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
   - Public forum : https://groups.google.com/forum/#!forum/lz4c
****************************************************************** */
#ifndef HUFF0_STATIC_H
#define HUFF0_STATIC_H

#if defined (__cplusplus)
extern "C" {
#endif



/* ****************************************
*  Static allocation macros
******************************************/
/* static allocation of Huff0's DTable */
#define HUF_DTABLE_SIZE(maxTableLog)   (1 + (1<<maxTableLog))  /* nb Cells; use unsigned short for X2, unsigned int for X4 */
#define HUF_CREATE_STATIC_DTABLEX2(DTable, maxTableLog) \
        unsigned short DTable[HUF_DTABLE_SIZE(maxTableLog)] = { maxTableLog }
#define HUF_CREATE_STATIC_DTABLEX4(DTable, maxTableLog) \
        unsigned int DTable[HUF_DTABLE_SIZE(maxTableLog)] = { maxTableLog }
#define HUF_CREATE_STATIC_DTABLEX6(DTable, maxTableLog) \
        unsigned int DTable[HUF_DTABLE_SIZE(maxTableLog) * 3 / 2] = { maxTableLog }


/* ****************************************
*  Advanced decompression functions
******************************************/
static size_t HUF_decompress4X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize);   /* single-symbol decoder */
static size_t HUF_decompress4X4 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize);   /* double-symbols decoder */


/* ****************************************
*  Huff0 detailed API
******************************************/
/*!
HUF_decompress() does the following:
1. select the decompression algorithm (X2, X4, X6) based on pre-computed heuristics
2. build Huffman table from save, using HUF_readDTableXn()
3. decode 1 or 4 segments in parallel using HUF_decompressSXn_usingDTable

*/
static size_t HUF_readDTableX2 (unsigned short* DTable, const void* src, size_t srcSize);
static size_t HUF_readDTableX4 (unsigned* DTable, const void* src, size_t srcSize);

static size_t HUF_decompress4X2_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const unsigned short* DTable);
static size_t HUF_decompress4X4_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const unsigned* DTable);


#if defined (__cplusplus)
}
#endif

#endif /* HUFF0_STATIC_H */



/* ******************************************************************
   Huff0 : Huffman coder, part of New Generation Entropy library
   Copyright (C) 2013-2015, Yann Collet.

   BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)

   Redistribution and use in source and binary forms, with or without
   modification, are permitted provided that the following conditions are
   met:

       * Redistributions of source code must retain the above copyright
   notice, this list of conditions and the following disclaimer.
       * Redistributions in binary form must reproduce the above
   copyright notice, this list of conditions and the following disclaimer
   in the documentation and/or other materials provided with the
   distribution.

   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

    You can contact the author at :
    - FSE+Huff0 source repository : https://github.com/Cyan4973/FiniteStateEntropy
****************************************************************** */

/* **************************************************************
*  Compiler specifics
****************************************************************/
#if defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
/* inline is defined */
#elif defined(_MSC_VER)
#  define inline __inline
#else
#  define inline /* disable inline */
#endif


#ifdef _MSC_VER    /* Visual Studio */
#  pragma warning(disable : 4127)        /* disable: C4127: conditional expression is constant */
#endif


/* **************************************************************
*  Includes
****************************************************************/
#include <stdlib.h>     /* malloc, free, qsort */
#include <string.h>     /* memcpy, memset */
#include <stdio.h>      /* printf (debug) */


/* **************************************************************
*  Constants
****************************************************************/
#define HUF_ABSOLUTEMAX_TABLELOG  16   /* absolute limit of HUF_MAX_TABLELOG. Beyond that value, code does not work */
#define HUF_MAX_TABLELOG  12           /* max configured tableLog (for static allocation); can be modified up to HUF_ABSOLUTEMAX_TABLELOG */
#define HUF_DEFAULT_TABLELOG  HUF_MAX_TABLELOG   /* tableLog by default, when not specified */
#define HUF_MAX_SYMBOL_VALUE 255
#if (HUF_MAX_TABLELOG > HUF_ABSOLUTEMAX_TABLELOG)
#  error "HUF_MAX_TABLELOG is too large !"
#endif


/* **************************************************************
*  Error Management
****************************************************************/
static unsigned HUF_isError(size_t code) { return ERR_isError(code); }
#define HUF_STATIC_ASSERT(c) { enum { HUF_static_assert = 1/(int)(!!(c)) }; }   /* use only *after* variable declarations */



/*-*******************************************************
*  Huff0 : Huffman block decompression
*********************************************************/
typedef struct { BYTE byte; BYTE nbBits; } HUF_DEltX2;   /* single-symbol decoding */

typedef struct { U16 sequence; BYTE nbBits; BYTE length; } HUF_DEltX4;  /* double-symbols decoding */

typedef struct { BYTE symbol; BYTE weight; } sortedSymbol_t;

/*! HUF_readStats
    Read compact Huffman tree, saved by HUF_writeCTable
    @huffWeight : destination buffer
    @return : size read from `src`
*/
static size_t HUF_readStats(BYTE* huffWeight, size_t hwSize, U32* rankStats,
                            U32* nbSymbolsPtr, U32* tableLogPtr,
                            const void* src, size_t srcSize)
{
    U32 weightTotal;
    U32 tableLog;
    const BYTE* ip = (const BYTE*) src;
    size_t iSize;
    size_t oSize;
    U32 n;

    if (!srcSize) return ERROR(srcSize_wrong);
    iSize = ip[0];
    //memset(huffWeight, 0, hwSize);   /* is not necessary, even though some analyzer complain ... */

    if (iSize >= 128)  /* special header */
    {
        if (iSize >= (242))   /* RLE */
        {
            static int l[14] = { 1, 2, 3, 4, 7, 8, 15, 16, 31, 32, 63, 64, 127, 128 };
            oSize = l[iSize-242];
            memset(huffWeight, 1, hwSize);
            iSize = 0;
        }
        else   /* Incompressible */
        {
            oSize = iSize - 127;
            iSize = ((oSize+1)/2);
            if (iSize+1 > srcSize) return ERROR(srcSize_wrong);
            if (oSize >= hwSize) return ERROR(corruption_detected);
            ip += 1;
            for (n=0; n<oSize; n+=2)
            {
                huffWeight[n]   = ip[n/2] >> 4;
                huffWeight[n+1] = ip[n/2] & 15;
            }
        }
    }
    else  /* header compressed with FSE (normal case) */
    {
        if (iSize+1 > srcSize) return ERROR(srcSize_wrong);
        oSize = FSE_decompress(huffWeight, hwSize-1, ip+1, iSize);   /* max (hwSize-1) values decoded, as last one is implied */
        if (FSE_isError(oSize)) return oSize;
    }

    /* collect weight stats */
    memset(rankStats, 0, (HUF_ABSOLUTEMAX_TABLELOG + 1) * sizeof(U32));
    weightTotal = 0;
    for (n=0; n<oSize; n++)
    {
        if (huffWeight[n] >= HUF_ABSOLUTEMAX_TABLELOG) return ERROR(corruption_detected);
        rankStats[huffWeight[n]]++;
        weightTotal += (1 << huffWeight[n]) >> 1;
    }
    if (weightTotal == 0) return ERROR(corruption_detected);

    /* get last non-null symbol weight (implied, total must be 2^n) */
    tableLog = BIT_highbit32(weightTotal) + 1;
    if (tableLog > HUF_ABSOLUTEMAX_TABLELOG) return ERROR(corruption_detected);
    {
        U32 total = 1 << tableLog;
        U32 rest = total - weightTotal;
        U32 verif = 1 << BIT_highbit32(rest);
        U32 lastWeight = BIT_highbit32(rest) + 1;
        if (verif != rest) return ERROR(corruption_detected);    /* last value must be a clean power of 2 */
        huffWeight[oSize] = (BYTE)lastWeight;
        rankStats[lastWeight]++;
    }

    /* check tree construction validity */
    if ((rankStats[1] < 2) || (rankStats[1] & 1)) return ERROR(corruption_detected);   /* by construction : at least 2 elts of rank 1, must be even */

    /* results */
    *nbSymbolsPtr = (U32)(oSize+1);
    *tableLogPtr = tableLog;
    return iSize+1;
}


/**************************/
/* single-symbol decoding */
/**************************/

static size_t HUF_readDTableX2 (U16* DTable, const void* src, size_t srcSize)
{
    BYTE huffWeight[HUF_MAX_SYMBOL_VALUE + 1];
    U32 rankVal[HUF_ABSOLUTEMAX_TABLELOG + 1];   /* large enough for values from 0 to 16 */
    U32 tableLog = 0;
    size_t iSize;
    U32 nbSymbols = 0;
    U32 n;
    U32 nextRankStart;
    void* const dtPtr = DTable + 1;
    HUF_DEltX2* const dt = (HUF_DEltX2*)dtPtr;

    HUF_STATIC_ASSERT(sizeof(HUF_DEltX2) == sizeof(U16));   /* if compilation fails here, assertion is false */
    //memset(huffWeight, 0, sizeof(huffWeight));   /* is not necessary, even though some analyzer complain ... */

    iSize = HUF_readStats(huffWeight, HUF_MAX_SYMBOL_VALUE + 1, rankVal, &nbSymbols, &tableLog, src, srcSize);
    if (HUF_isError(iSize)) return iSize;

    /* check result */
    if (tableLog > DTable[0]) return ERROR(tableLog_tooLarge);   /* DTable is too small */
    DTable[0] = (U16)tableLog;   /* maybe should separate sizeof DTable, as allocated, from used size of DTable, in case of DTable re-use */

    /* Prepare ranks */
    nextRankStart = 0;
    for (n=1; n<=tableLog; n++)
    {
        U32 current = nextRankStart;
        nextRankStart += (rankVal[n] << (n-1));
        rankVal[n] = current;
    }

    /* fill DTable */
    for (n=0; n<nbSymbols; n++)
    {
        const U32 w = huffWeight[n];
        const U32 length = (1 << w) >> 1;
        U32 i;
        HUF_DEltX2 D;
        D.byte = (BYTE)n; D.nbBits = (BYTE)(tableLog + 1 - w);
        for (i = rankVal[w]; i < rankVal[w] + length; i++)
            dt[i] = D;
        rankVal[w] += length;
    }

    return iSize;
}

static BYTE HUF_decodeSymbolX2(BIT_DStream_t* Dstream, const HUF_DEltX2* dt, const U32 dtLog)
{
        const size_t val = BIT_lookBitsFast(Dstream, dtLog); /* note : dtLog >= 1 */
        const BYTE c = dt[val].byte;
        BIT_skipBits(Dstream, dt[val].nbBits);
        return c;
}

#define HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr) \
    *ptr++ = HUF_decodeSymbolX2(DStreamPtr, dt, dtLog)

#define HUF_DECODE_SYMBOLX2_1(ptr, DStreamPtr) \
    if (MEM_64bits() || (HUF_MAX_TABLELOG<=12)) \
        HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr)

#define HUF_DECODE_SYMBOLX2_2(ptr, DStreamPtr) \
    if (MEM_64bits()) \
        HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr)

static inline size_t HUF_decodeStreamX2(BYTE* p, BIT_DStream_t* const bitDPtr, BYTE* const pEnd, const HUF_DEltX2* const dt, const U32 dtLog)
{
    BYTE* const pStart = p;

    /* up to 4 symbols at a time */
    while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p <= pEnd-4))
    {
        HUF_DECODE_SYMBOLX2_2(p, bitDPtr);
        HUF_DECODE_SYMBOLX2_1(p, bitDPtr);
        HUF_DECODE_SYMBOLX2_2(p, bitDPtr);
        HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
    }

    /* closer to the end */
    while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p < pEnd))
        HUF_DECODE_SYMBOLX2_0(p, bitDPtr);

    /* no more data to retrieve from bitstream, hence no need to reload */
    while (p < pEnd)
        HUF_DECODE_SYMBOLX2_0(p, bitDPtr);

    return pEnd-pStart;
}


static size_t HUF_decompress4X2_usingDTable(
          void* dst,  size_t dstSize,
    const void* cSrc, size_t cSrcSize,
    const U16* DTable)
{
    if (cSrcSize < 10) return ERROR(corruption_detected);   /* strict minimum : jump table + 1 byte per stream */

    {
        const BYTE* const istart = (const BYTE*) cSrc;
        BYTE* const ostart = (BYTE*) dst;
        BYTE* const oend = ostart + dstSize;
        const void* const dtPtr = DTable;
        const HUF_DEltX2* const dt = ((const HUF_DEltX2*)dtPtr) +1;
        const U32 dtLog = DTable[0];
        size_t errorCode;

        /* Init */
        BIT_DStream_t bitD1;
        BIT_DStream_t bitD2;
        BIT_DStream_t bitD3;
        BIT_DStream_t bitD4;
        const size_t length1 = MEM_readLE16(istart);
        const size_t length2 = MEM_readLE16(istart+2);
        const size_t length3 = MEM_readLE16(istart+4);
        size_t length4;
        const BYTE* const istart1 = istart + 6;  /* jumpTable */
        const BYTE* const istart2 = istart1 + length1;
        const BYTE* const istart3 = istart2 + length2;
        const BYTE* const istart4 = istart3 + length3;
        const size_t segmentSize = (dstSize+3) / 4;
        BYTE* const opStart2 = ostart + segmentSize;
        BYTE* const opStart3 = opStart2 + segmentSize;
        BYTE* const opStart4 = opStart3 + segmentSize;
        BYTE* op1 = ostart;
        BYTE* op2 = opStart2;
        BYTE* op3 = opStart3;
        BYTE* op4 = opStart4;
        U32 endSignal;

        length4 = cSrcSize - (length1 + length2 + length3 + 6);
        if (length4 > cSrcSize) return ERROR(corruption_detected);   /* overflow */
        errorCode = BIT_initDStream(&bitD1, istart1, length1);
        if (HUF_isError(errorCode)) return errorCode;
        errorCode = BIT_initDStream(&bitD2, istart2, length2);
        if (HUF_isError(errorCode)) return errorCode;
        errorCode = BIT_initDStream(&bitD3, istart3, length3);
        if (HUF_isError(errorCode)) return errorCode;
        errorCode = BIT_initDStream(&bitD4, istart4, length4);
        if (HUF_isError(errorCode)) return errorCode;

        /* 16-32 symbols per loop (4-8 symbols per stream) */
        endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
        for ( ; (endSignal==BIT_DStream_unfinished) && (op4<(oend-7)) ; )
        {
            HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
            HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
            HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
            HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
            HUF_DECODE_SYMBOLX2_1(op1, &bitD1);
            HUF_DECODE_SYMBOLX2_1(op2, &bitD2);
            HUF_DECODE_SYMBOLX2_1(op3, &bitD3);
            HUF_DECODE_SYMBOLX2_1(op4, &bitD4);
            HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
            HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
            HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
            HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
            HUF_DECODE_SYMBOLX2_0(op1, &bitD1);
            HUF_DECODE_SYMBOLX2_0(op2, &bitD2);
            HUF_DECODE_SYMBOLX2_0(op3, &bitD3);
            HUF_DECODE_SYMBOLX2_0(op4, &bitD4);

            endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
        }

        /* check corruption */
        if (op1 > opStart2) return ERROR(corruption_detected);
        if (op2 > opStart3) return ERROR(corruption_detected);
        if (op3 > opStart4) return ERROR(corruption_detected);
        /* note : op4 supposed already verified within main loop */

        /* finish bitStreams one by one */
        HUF_decodeStreamX2(op1, &bitD1, opStart2, dt, dtLog);
        HUF_decodeStreamX2(op2, &bitD2, opStart3, dt, dtLog);
        HUF_decodeStreamX2(op3, &bitD3, opStart4, dt, dtLog);
        HUF_decodeStreamX2(op4, &bitD4, oend,     dt, dtLog);

        /* check */
        endSignal = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4);
        if (!endSignal) return ERROR(corruption_detected);

        /* decoded size */
        return dstSize;
    }
}


static size_t HUF_decompress4X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
{
    HUF_CREATE_STATIC_DTABLEX2(DTable, HUF_MAX_TABLELOG);
    const BYTE* ip = (const BYTE*) cSrc;
    size_t errorCode;

    errorCode = HUF_readDTableX2 (DTable, cSrc, cSrcSize);
    if (HUF_isError(errorCode)) return errorCode;
    if (errorCode >= cSrcSize) return ERROR(srcSize_wrong);
    ip += errorCode;
    cSrcSize -= errorCode;

    return HUF_decompress4X2_usingDTable (dst, dstSize, ip, cSrcSize, DTable);
}


/***************************/
/* double-symbols decoding */
/***************************/

static void HUF_fillDTableX4Level2(HUF_DEltX4* DTable, U32 sizeLog, const U32 consumed,
                           const U32* rankValOrigin, const int minWeight,
                           const sortedSymbol_t* sortedSymbols, const U32 sortedListSize,
                           U32 nbBitsBaseline, U16 baseSeq)
{
    HUF_DEltX4 DElt;
    U32 rankVal[HUF_ABSOLUTEMAX_TABLELOG + 1];
    U32 s;

    /* get pre-calculated rankVal */
    memcpy(rankVal, rankValOrigin, sizeof(rankVal));

    /* fill skipped values */
    if (minWeight>1)
    {
        U32 i, skipSize = rankVal[minWeight];
        MEM_writeLE16(&(DElt.sequence), baseSeq);
        DElt.nbBits   = (BYTE)(consumed);
        DElt.length   = 1;
        for (i = 0; i < skipSize; i++)
            DTable[i] = DElt;
    }

    /* fill DTable */
    for (s=0; s<sortedListSize; s++)   /* note : sortedSymbols already skipped */
    {
        const U32 symbol = sortedSymbols[s].symbol;
        const U32 weight = sortedSymbols[s].weight;
        const U32 nbBits = nbBitsBaseline - weight;
        const U32 length = 1 << (sizeLog-nbBits);
        const U32 start = rankVal[weight];
        U32 i = start;
        const U32 end = start + length;

        MEM_writeLE16(&(DElt.sequence), (U16)(baseSeq + (symbol << 8)));
        DElt.nbBits = (BYTE)(nbBits + consumed);
        DElt.length = 2;
        do { DTable[i++] = DElt; } while (i<end);   /* since length >= 1 */

        rankVal[weight] += length;
    }
}

typedef U32 rankVal_t[HUF_ABSOLUTEMAX_TABLELOG][HUF_ABSOLUTEMAX_TABLELOG + 1];

static void HUF_fillDTableX4(HUF_DEltX4* DTable, const U32 targetLog,
                           const sortedSymbol_t* sortedList, const U32 sortedListSize,
                           const U32* rankStart, rankVal_t rankValOrigin, const U32 maxWeight,
                           const U32 nbBitsBaseline)
{
    U32 rankVal[HUF_ABSOLUTEMAX_TABLELOG + 1];
    const int scaleLog = nbBitsBaseline - targetLog;   /* note : targetLog >= srcLog, hence scaleLog <= 1 */
    const U32 minBits  = nbBitsBaseline - maxWeight;
    U32 s;

    memcpy(rankVal, rankValOrigin, sizeof(rankVal));

    /* fill DTable */
    for (s=0; s<sortedListSize; s++)
    {
        const U16 symbol = sortedList[s].symbol;
        const U32 weight = sortedList[s].weight;
        const U32 nbBits = nbBitsBaseline - weight;
        const U32 start = rankVal[weight];
        const U32 length = 1 << (targetLog-nbBits);

        if (targetLog-nbBits >= minBits)   /* enough room for a second symbol */
        {
            U32 sortedRank;
            int minWeight = nbBits + scaleLog;
            if (minWeight < 1) minWeight = 1;
            sortedRank = rankStart[minWeight];
            HUF_fillDTableX4Level2(DTable+start, targetLog-nbBits, nbBits,
                           rankValOrigin[nbBits], minWeight,
                           sortedList+sortedRank, sortedListSize-sortedRank,
                           nbBitsBaseline, symbol);
        }
        else
        {
            U32 i;
            const U32 end = start + length;
            HUF_DEltX4 DElt;

            MEM_writeLE16(&(DElt.sequence), symbol);
            DElt.nbBits   = (BYTE)(nbBits);
            DElt.length   = 1;
            for (i = start; i < end; i++)
                DTable[i] = DElt;
        }
        rankVal[weight] += length;
    }
}

static size_t HUF_readDTableX4 (U32* DTable, const void* src, size_t srcSize)
{
    BYTE weightList[HUF_MAX_SYMBOL_VALUE + 1];
    sortedSymbol_t sortedSymbol[HUF_MAX_SYMBOL_VALUE + 1];
    U32 rankStats[HUF_ABSOLUTEMAX_TABLELOG + 1] = { 0 };
    U32 rankStart0[HUF_ABSOLUTEMAX_TABLELOG + 2] = { 0 };
    U32* const rankStart = rankStart0+1;
    rankVal_t rankVal;
    U32 tableLog, maxW, sizeOfSort, nbSymbols;
    const U32 memLog = DTable[0];
    size_t iSize;
    void* dtPtr = DTable;
    HUF_DEltX4* const dt = ((HUF_DEltX4*)dtPtr) + 1;

    HUF_STATIC_ASSERT(sizeof(HUF_DEltX4) == sizeof(U32));   /* if compilation fails here, assertion is false */
    if (memLog > HUF_ABSOLUTEMAX_TABLELOG) return ERROR(tableLog_tooLarge);
    //memset(weightList, 0, sizeof(weightList));   /* is not necessary, even though some analyzer complain ... */

    iSize = HUF_readStats(weightList, HUF_MAX_SYMBOL_VALUE + 1, rankStats, &nbSymbols, &tableLog, src, srcSize);
    if (HUF_isError(iSize)) return iSize;

    /* check result */
    if (tableLog > memLog) return ERROR(tableLog_tooLarge);   /* DTable can't fit code depth */

    /* find maxWeight */
    for (maxW = tableLog; rankStats[maxW]==0; maxW--)
        { if (!maxW) return ERROR(GENERIC); }  /* necessarily finds a solution before maxW==0 */

    /* Get start index of each weight */
    {
        U32 w, nextRankStart = 0;
        for (w=1; w<=maxW; w++)
        {
            U32 current = nextRankStart;
            nextRankStart += rankStats[w];
            rankStart[w] = current;
        }
        rankStart[0] = nextRankStart;   /* put all 0w symbols at the end of sorted list*/
        sizeOfSort = nextRankStart;
    }

    /* sort symbols by weight */
    {
        U32 s;
        for (s=0; s<nbSymbols; s++)
        {
            U32 w = weightList[s];
            U32 r = rankStart[w]++;
            sortedSymbol[r].symbol = (BYTE)s;
            sortedSymbol[r].weight = (BYTE)w;
        }
        rankStart[0] = 0;   /* forget 0w symbols; this is beginning of weight(1) */
    }

    /* Build rankVal */
    {
        const U32 minBits = tableLog+1 - maxW;
        U32 nextRankVal = 0;
        U32 w, consumed;
        const int rescale = (memLog-tableLog) - 1;   /* tableLog <= memLog */
        U32* rankVal0 = rankVal[0];
        for (w=1; w<=maxW; w++)
        {
            U32 current = nextRankVal;
            nextRankVal += rankStats[w] << (w+rescale);
            rankVal0[w] = current;
        }
        for (consumed = minBits; consumed <= memLog - minBits; consumed++)
        {
            U32* rankValPtr = rankVal[consumed];
            for (w = 1; w <= maxW; w++)
            {
                rankValPtr[w] = rankVal0[w] >> consumed;
            }
        }
    }

    HUF_fillDTableX4(dt, memLog,
                   sortedSymbol, sizeOfSort,
                   rankStart0, rankVal, maxW,
                   tableLog+1);

    return iSize;
}


static U32 HUF_decodeSymbolX4(void* op, BIT_DStream_t* DStream, const HUF_DEltX4* dt, const U32 dtLog)
{
    const size_t val = BIT_lookBitsFast(DStream, dtLog);   /* note : dtLog >= 1 */
    memcpy(op, dt+val, 2);
    BIT_skipBits(DStream, dt[val].nbBits);
    return dt[val].length;
}

static U32 HUF_decodeLastSymbolX4(void* op, BIT_DStream_t* DStream, const HUF_DEltX4* dt, const U32 dtLog)
{
    const size_t val = BIT_lookBitsFast(DStream, dtLog);   /* note : dtLog >= 1 */
    memcpy(op, dt+val, 1);
    if (dt[val].length==1) BIT_skipBits(DStream, dt[val].nbBits);
    else
    {
        if (DStream->bitsConsumed < (sizeof(DStream->bitContainer)*8))
        {
            BIT_skipBits(DStream, dt[val].nbBits);
            if (DStream->bitsConsumed > (sizeof(DStream->bitContainer)*8))
                DStream->bitsConsumed = (sizeof(DStream->bitContainer)*8);   /* ugly hack; works only because it's the last symbol. Note : can't easily extract nbBits from just this symbol */
        }
    }
    return 1;
}


#define HUF_DECODE_SYMBOLX4_0(ptr, DStreamPtr) \
    ptr += HUF_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog)

#define HUF_DECODE_SYMBOLX4_1(ptr, DStreamPtr) \
    if (MEM_64bits() || (HUF_MAX_TABLELOG<=12)) \
        ptr += HUF_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog)

#define HUF_DECODE_SYMBOLX4_2(ptr, DStreamPtr) \
    if (MEM_64bits()) \
        ptr += HUF_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog)

static inline size_t HUF_decodeStreamX4(BYTE* p, BIT_DStream_t* bitDPtr, BYTE* const pEnd, const HUF_DEltX4* const dt, const U32 dtLog)
{
    BYTE* const pStart = p;

    /* up to 8 symbols at a time */
    while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p < pEnd-7))
    {
        HUF_DECODE_SYMBOLX4_2(p, bitDPtr);
        HUF_DECODE_SYMBOLX4_1(p, bitDPtr);
        HUF_DECODE_SYMBOLX4_2(p, bitDPtr);
        HUF_DECODE_SYMBOLX4_0(p, bitDPtr);
    }

    /* closer to the end */
    while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p <= pEnd-2))
        HUF_DECODE_SYMBOLX4_0(p, bitDPtr);

    while (p <= pEnd-2)
        HUF_DECODE_SYMBOLX4_0(p, bitDPtr);   /* no need to reload : reached the end of DStream */

    if (p < pEnd)
        p += HUF_decodeLastSymbolX4(p, bitDPtr, dt, dtLog);

    return p-pStart;
}

static size_t HUF_decompress4X4_usingDTable(
          void* dst,  size_t dstSize,
    const void* cSrc, size_t cSrcSize,
    const U32* DTable)
{
    if (cSrcSize < 10) return ERROR(corruption_detected);   /* strict minimum : jump table + 1 byte per stream */

    {
        const BYTE* const istart = (const BYTE*) cSrc;
        BYTE* const ostart = (BYTE*) dst;
        BYTE* const oend = ostart + dstSize;
        const void* const dtPtr = DTable;
        const HUF_DEltX4* const dt = ((const HUF_DEltX4*)dtPtr) +1;
        const U32 dtLog = DTable[0];
        size_t errorCode;

        /* Init */
        BIT_DStream_t bitD1;
        BIT_DStream_t bitD2;
        BIT_DStream_t bitD3;
        BIT_DStream_t bitD4;
        const size_t length1 = MEM_readLE16(istart);
        const size_t length2 = MEM_readLE16(istart+2);
        const size_t length3 = MEM_readLE16(istart+4);
        size_t length4;
        const BYTE* const istart1 = istart + 6;  /* jumpTable */
        const BYTE* const istart2 = istart1 + length1;
        const BYTE* const istart3 = istart2 + length2;
        const BYTE* const istart4 = istart3 + length3;
        const size_t segmentSize = (dstSize+3) / 4;
        BYTE* const opStart2 = ostart + segmentSize;
        BYTE* const opStart3 = opStart2 + segmentSize;
        BYTE* const opStart4 = opStart3 + segmentSize;
        BYTE* op1 = ostart;
        BYTE* op2 = opStart2;
        BYTE* op3 = opStart3;
        BYTE* op4 = opStart4;
        U32 endSignal;

        length4 = cSrcSize - (length1 + length2 + length3 + 6);
        if (length4 > cSrcSize) return ERROR(corruption_detected);   /* overflow */
        errorCode = BIT_initDStream(&bitD1, istart1, length1);
        if (HUF_isError(errorCode)) return errorCode;
        errorCode = BIT_initDStream(&bitD2, istart2, length2);
        if (HUF_isError(errorCode)) return errorCode;
        errorCode = BIT_initDStream(&bitD3, istart3, length3);
        if (HUF_isError(errorCode)) return errorCode;
        errorCode = BIT_initDStream(&bitD4, istart4, length4);
        if (HUF_isError(errorCode)) return errorCode;

        /* 16-32 symbols per loop (4-8 symbols per stream) */
        endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
        for ( ; (endSignal==BIT_DStream_unfinished) && (op4<(oend-7)) ; )
        {
            HUF_DECODE_SYMBOLX4_2(op1, &bitD1);
            HUF_DECODE_SYMBOLX4_2(op2, &bitD2);
            HUF_DECODE_SYMBOLX4_2(op3, &bitD3);
            HUF_DECODE_SYMBOLX4_2(op4, &bitD4);
            HUF_DECODE_SYMBOLX4_1(op1, &bitD1);
            HUF_DECODE_SYMBOLX4_1(op2, &bitD2);
            HUF_DECODE_SYMBOLX4_1(op3, &bitD3);
            HUF_DECODE_SYMBOLX4_1(op4, &bitD4);
            HUF_DECODE_SYMBOLX4_2(op1, &bitD1);
            HUF_DECODE_SYMBOLX4_2(op2, &bitD2);
            HUF_DECODE_SYMBOLX4_2(op3, &bitD3);
            HUF_DECODE_SYMBOLX4_2(op4, &bitD4);
            HUF_DECODE_SYMBOLX4_0(op1, &bitD1);
            HUF_DECODE_SYMBOLX4_0(op2, &bitD2);
            HUF_DECODE_SYMBOLX4_0(op3, &bitD3);
            HUF_DECODE_SYMBOLX4_0(op4, &bitD4);

            endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
        }

        /* check corruption */
        if (op1 > opStart2) return ERROR(corruption_detected);
        if (op2 > opStart3) return ERROR(corruption_detected);
        if (op3 > opStart4) return ERROR(corruption_detected);
        /* note : op4 supposed already verified within main loop */

        /* finish bitStreams one by one */
        HUF_decodeStreamX4(op1, &bitD1, opStart2, dt, dtLog);
        HUF_decodeStreamX4(op2, &bitD2, opStart3, dt, dtLog);
        HUF_decodeStreamX4(op3, &bitD3, opStart4, dt, dtLog);
        HUF_decodeStreamX4(op4, &bitD4, oend,     dt, dtLog);

        /* check */
        endSignal = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4);
        if (!endSignal) return ERROR(corruption_detected);

        /* decoded size */
        return dstSize;
    }
}


static size_t HUF_decompress4X4 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
{
    HUF_CREATE_STATIC_DTABLEX4(DTable, HUF_MAX_TABLELOG);
    const BYTE* ip = (const BYTE*) cSrc;

    size_t hSize = HUF_readDTableX4 (DTable, cSrc, cSrcSize);
    if (HUF_isError(hSize)) return hSize;
    if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
    ip += hSize;
    cSrcSize -= hSize;

    return HUF_decompress4X4_usingDTable (dst, dstSize, ip, cSrcSize, DTable);
}


/**********************************/
/* Generic decompression selector */
/**********************************/

typedef struct { U32 tableTime; U32 decode256Time; } algo_time_t;
static const algo_time_t algoTime[16 /* Quantization */][3 /* single, double, quad */] =
{
    /* single, double, quad */
    {{0,0}, {1,1}, {2,2}},  /* Q==0 : impossible */
    {{0,0}, {1,1}, {2,2}},  /* Q==1 : impossible */
    {{  38,130}, {1313, 74}, {2151, 38}},   /* Q == 2 : 12-18% */
    {{ 448,128}, {1353, 74}, {2238, 41}},   /* Q == 3 : 18-25% */
    {{ 556,128}, {1353, 74}, {2238, 47}},   /* Q == 4 : 25-32% */
    {{ 714,128}, {1418, 74}, {2436, 53}},   /* Q == 5 : 32-38% */
    {{ 883,128}, {1437, 74}, {2464, 61}},   /* Q == 6 : 38-44% */
    {{ 897,128}, {1515, 75}, {2622, 68}},   /* Q == 7 : 44-50% */
    {{ 926,128}, {1613, 75}, {2730, 75}},   /* Q == 8 : 50-56% */
    {{ 947,128}, {1729, 77}, {3359, 77}},   /* Q == 9 : 56-62% */
    {{1107,128}, {2083, 81}, {4006, 84}},   /* Q ==10 : 62-69% */
    {{1177,128}, {2379, 87}, {4785, 88}},   /* Q ==11 : 69-75% */
    {{1242,128}, {2415, 93}, {5155, 84}},   /* Q ==12 : 75-81% */
    {{1349,128}, {2644,106}, {5260,106}},   /* Q ==13 : 81-87% */
    {{1455,128}, {2422,124}, {4174,124}},   /* Q ==14 : 87-93% */
    {{ 722,128}, {1891,145}, {1936,146}},   /* Q ==15 : 93-99% */
};

typedef size_t (*decompressionAlgo)(void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize);

static size_t HUF_decompress (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
{
    static const decompressionAlgo decompress[3] = { HUF_decompress4X2, HUF_decompress4X4, NULL };
    /* estimate decompression time */
    U32 Q;
    const U32 D256 = (U32)(dstSize >> 8);
    U32 Dtime[3];
    U32 algoNb = 0;
    int n;

    /* validation checks */
    if (dstSize == 0) return ERROR(dstSize_tooSmall);
    if (cSrcSize > dstSize) return ERROR(corruption_detected);   /* invalid */
    if (cSrcSize == dstSize) { memcpy(dst, cSrc, dstSize); return dstSize; }   /* not compressed */
    if (cSrcSize == 1) { memset(dst, *(const BYTE*)cSrc, dstSize); return dstSize; }   /* RLE */

    /* decoder timing evaluation */
    Q = (U32)(cSrcSize * 16 / dstSize);   /* Q < 16 since dstSize > cSrcSize */
    for (n=0; n<3; n++)
        Dtime[n] = algoTime[Q][n].tableTime + (algoTime[Q][n].decode256Time * D256);

    Dtime[1] += Dtime[1] >> 4; Dtime[2] += Dtime[2] >> 3; /* advantage to algorithms using less memory, for cache eviction */

    if (Dtime[1] < Dtime[0]) algoNb = 1;

    return decompress[algoNb](dst, dstSize, cSrc, cSrcSize);

    //return HUF_decompress4X2(dst, dstSize, cSrc, cSrcSize);   /* multi-streams single-symbol decoding */
    //return HUF_decompress4X4(dst, dstSize, cSrc, cSrcSize);   /* multi-streams double-symbols decoding */
    //return HUF_decompress4X6(dst, dstSize, cSrc, cSrcSize);   /* multi-streams quad-symbols decoding */
}



#endif   /* ZSTD_CCOMMON_H_MODULE */


/*
    zstd - decompression module fo v0.4 legacy format
    Copyright (C) 2015-2016, Yann Collet.

    BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)

    Redistribution and use in source and binary forms, with or without
    modification, are permitted provided that the following conditions are
    met:
    * Redistributions of source code must retain the above copyright
    notice, this list of conditions and the following disclaimer.
    * Redistributions in binary form must reproduce the above
    copyright notice, this list of conditions and the following disclaimer
    in the documentation and/or other materials provided with the
    distribution.
    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
    "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
    LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
    A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
    OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
    SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
    LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
    DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
    THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
    (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
    OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

    You can contact the author at :
    - zstd source repository : https://github.com/Cyan4973/zstd
    - ztsd public forum : https://groups.google.com/forum/#!forum/lz4c
*/

/* ***************************************************************
*  Tuning parameters
*****************************************************************/
/*!
 * HEAPMODE :
 * Select how default decompression function ZSTD_decompress() will allocate memory,
 * in memory stack (0), or in memory heap (1, requires malloc())
 */
#ifndef ZSTD_HEAPMODE
#  define ZSTD_HEAPMODE 1
#endif


/* *******************************************************
*  Includes
*********************************************************/
#include <stdlib.h>      /* calloc */
#include <string.h>      /* memcpy, memmove */
#include <stdio.h>       /* debug : printf */


/* *******************************************************
*  Compiler specifics
*********************************************************/
#ifdef _MSC_VER    /* Visual Studio */
#  include <intrin.h>                    /* For Visual 2005 */
#  pragma warning(disable : 4127)        /* disable: C4127: conditional expression is constant */
#  pragma warning(disable : 4324)        /* disable: C4324: padded structure */
#endif


/* *************************************
*  Local types
***************************************/
typedef struct
{
    blockType_t blockType;
    U32 origSize;
} blockProperties_t;


/* *******************************************************
*  Memory operations
**********************************************************/
static void ZSTD_copy4(void* dst, const void* src) { memcpy(dst, src, 4); }


/* *************************************
*  Error Management
***************************************/

/*! ZSTD_isError
*   tells if a return value is an error code */
static unsigned ZSTD_isError(size_t code) { return ERR_isError(code); }


/* *************************************************************
*   Context management
***************************************************************/
typedef enum { ZSTDds_getFrameHeaderSize, ZSTDds_decodeFrameHeader,
               ZSTDds_decodeBlockHeader, ZSTDds_decompressBlock } ZSTD_dStage;

struct ZSTDv04_Dctx_s
{
    U32 LLTable[FSE_DTABLE_SIZE_U32(LLFSELog)];
    U32 OffTable[FSE_DTABLE_SIZE_U32(OffFSELog)];
    U32 MLTable[FSE_DTABLE_SIZE_U32(MLFSELog)];
    const void* previousDstEnd;
    const void* base;
    const void* vBase;
    const void* dictEnd;
    size_t expected;
    size_t headerSize;
    ZSTD_parameters params;
    blockType_t bType;
    ZSTD_dStage stage;
    const BYTE* litPtr;
    size_t litSize;
    BYTE litBuffer[BLOCKSIZE + 8 /* margin for wildcopy */];
    BYTE headerBuffer[ZSTD_frameHeaderSize_max];
};  /* typedef'd to ZSTD_DCtx within "zstd_static.h" */

static size_t ZSTD_resetDCtx(ZSTD_DCtx* dctx)
{
    dctx->expected = ZSTD_frameHeaderSize_min;
    dctx->stage = ZSTDds_getFrameHeaderSize;
    dctx->previousDstEnd = NULL;
    dctx->base = NULL;
    dctx->vBase = NULL;
    dctx->dictEnd = NULL;
    return 0;
}

static ZSTD_DCtx* ZSTD_createDCtx(void)
{
    ZSTD_DCtx* dctx = (ZSTD_DCtx*)malloc(sizeof(ZSTD_DCtx));
    if (dctx==NULL) return NULL;
    ZSTD_resetDCtx(dctx);
    return dctx;
}

static size_t ZSTD_freeDCtx(ZSTD_DCtx* dctx)
{
    free(dctx);
    return 0;
}


/* *************************************************************
*   Decompression section
***************************************************************/
/** ZSTD_decodeFrameHeader_Part1
*   decode the 1st part of the Frame Header, which tells Frame Header size.
*   srcSize must be == ZSTD_frameHeaderSize_min
*   @return : the full size of the Frame Header */
static size_t ZSTD_decodeFrameHeader_Part1(ZSTD_DCtx* zc, const void* src, size_t srcSize)
{
    U32 magicNumber;
    if (srcSize != ZSTD_frameHeaderSize_min) return ERROR(srcSize_wrong);
    magicNumber = MEM_readLE32(src);
    if (magicNumber != ZSTD_MAGICNUMBER) return ERROR(prefix_unknown);
    zc->headerSize = ZSTD_frameHeaderSize_min;
    return zc->headerSize;
}


static size_t ZSTD_getFrameParams(ZSTD_parameters* params, const void* src, size_t srcSize)
{
    U32 magicNumber;
    if (srcSize < ZSTD_frameHeaderSize_min) return ZSTD_frameHeaderSize_max;
    magicNumber = MEM_readLE32(src);
    if (magicNumber != ZSTD_MAGICNUMBER) return ERROR(prefix_unknown);
    memset(params, 0, sizeof(*params));
    params->windowLog = (((const BYTE*)src)[4] & 15) + ZSTD_WINDOWLOG_ABSOLUTEMIN;
    if ((((const BYTE*)src)[4] >> 4) != 0) return ERROR(frameParameter_unsupported);   /* reserved bits */
    return 0;
}

/** ZSTD_decodeFrameHeader_Part2
*   decode the full Frame Header
*   srcSize must be the size provided by ZSTD_decodeFrameHeader_Part1
*   @return : 0, or an error code, which can be tested using ZSTD_isError() */
static size_t ZSTD_decodeFrameHeader_Part2(ZSTD_DCtx* zc, const void* src, size_t srcSize)
{
    size_t result;
    if (srcSize != zc->headerSize) return ERROR(srcSize_wrong);
    result = ZSTD_getFrameParams(&(zc->params), src, srcSize);
    if ((MEM_32bits()) && (zc->params.windowLog > 25)) return ERROR(frameParameter_unsupported);
    return result;
}


static size_t ZSTD_getcBlockSize(const void* src, size_t srcSize, blockProperties_t* bpPtr)
{
    const BYTE* const in = (const BYTE* const)src;
    BYTE headerFlags;
    U32 cSize;

    if (srcSize < 3) return ERROR(srcSize_wrong);

    headerFlags = *in;
    cSize = in[2] + (in[1]<<8) + ((in[0] & 7)<<16);

    bpPtr->blockType = (blockType_t)(headerFlags >> 6);
    bpPtr->origSize = (bpPtr->blockType == bt_rle) ? cSize : 0;

    if (bpPtr->blockType == bt_end) return 0;
    if (bpPtr->blockType == bt_rle) return 1;
    return cSize;
}

static size_t ZSTD_copyRawBlock(void* dst, size_t maxDstSize, const void* src, size_t srcSize)
{
    if (srcSize > maxDstSize) return ERROR(dstSize_tooSmall);
    memcpy(dst, src, srcSize);
    return srcSize;
}


/** ZSTD_decompressLiterals
    @return : nb of bytes read from src, or an error code*/
static size_t ZSTD_decompressLiterals(void* dst, size_t* maxDstSizePtr,
                                const void* src, size_t srcSize)
{
    const BYTE* ip = (const BYTE*)src;

    const size_t litSize = (MEM_readLE32(src) & 0x1FFFFF) >> 2;   /* no buffer issue : srcSize >= MIN_CBLOCK_SIZE */
    const size_t litCSize = (MEM_readLE32(ip+2) & 0xFFFFFF) >> 5;   /* no buffer issue : srcSize >= MIN_CBLOCK_SIZE */

    if (litSize > *maxDstSizePtr) return ERROR(corruption_detected);
    if (litCSize + 5 > srcSize) return ERROR(corruption_detected);

    if (HUF_isError(HUF_decompress(dst, litSize, ip+5, litCSize))) return ERROR(corruption_detected);

    *maxDstSizePtr = litSize;
    return litCSize + 5;
}


/** ZSTD_decodeLiteralsBlock
    @return : nb of bytes read from src (< srcSize ) */
static size_t ZSTD_decodeLiteralsBlock(ZSTD_DCtx* dctx,
                          const void* src, size_t srcSize)   /* note : srcSize < BLOCKSIZE */
{
    const BYTE* const istart = (const BYTE*) src;

    /* any compressed block with literals segment must be at least this size */
    if (srcSize < MIN_CBLOCK_SIZE) return ERROR(corruption_detected);

    switch(*istart & 3)
    {
    /* compressed */
    case 0:
        {
            size_t litSize = BLOCKSIZE;
            const size_t readSize = ZSTD_decompressLiterals(dctx->litBuffer, &litSize, src, srcSize);
            dctx->litPtr = dctx->litBuffer;
            dctx->litSize = litSize;
            memset(dctx->litBuffer + dctx->litSize, 0, 8);
            return readSize;   /* works if it's an error too */
        }
    case IS_RAW:
        {
            const size_t litSize = (MEM_readLE32(istart) & 0xFFFFFF) >> 2;   /* no buffer issue : srcSize >= MIN_CBLOCK_SIZE */
            if (litSize > srcSize-11)   /* risk of reading too far with wildcopy */
            {
                if (litSize > srcSize-3) return ERROR(corruption_detected);
                memcpy(dctx->litBuffer, istart, litSize);
                dctx->litPtr = dctx->litBuffer;
                dctx->litSize = litSize;
                memset(dctx->litBuffer + dctx->litSize, 0, 8);
                return litSize+3;
            }
            /* direct reference into compressed stream */
            dctx->litPtr = istart+3;
            dctx->litSize = litSize;
            return litSize+3;        }
    case IS_RLE:
        {
            const size_t litSize = (MEM_readLE32(istart) & 0xFFFFFF) >> 2;   /* no buffer issue : srcSize >= MIN_CBLOCK_SIZE */
            if (litSize > BLOCKSIZE) return ERROR(corruption_detected);
            memset(dctx->litBuffer, istart[3], litSize + 8);
            dctx->litPtr = dctx->litBuffer;
            dctx->litSize = litSize;
            return 4;
        }
    default:
        return ERROR(corruption_detected);   /* forbidden nominal case */
    }
}


static size_t ZSTD_decodeSeqHeaders(int* nbSeq, const BYTE** dumpsPtr, size_t* dumpsLengthPtr,
                         FSE_DTable* DTableLL, FSE_DTable* DTableML, FSE_DTable* DTableOffb,
                         const void* src, size_t srcSize)
{
    const BYTE* const istart = (const BYTE* const)src;
    const BYTE* ip = istart;
    const BYTE* const iend = istart + srcSize;
    U32 LLtype, Offtype, MLtype;
    U32 LLlog, Offlog, MLlog;
    size_t dumpsLength;

    /* check */
    if (srcSize < 5) return ERROR(srcSize_wrong);

    /* SeqHead */
    *nbSeq = MEM_readLE16(ip); ip+=2;
    LLtype  = *ip >> 6;
    Offtype = (*ip >> 4) & 3;
    MLtype  = (*ip >> 2) & 3;
    if (*ip & 2)
    {
        dumpsLength  = ip[2];
        dumpsLength += ip[1] << 8;
        ip += 3;
    }
    else
    {
        dumpsLength  = ip[1];
        dumpsLength += (ip[0] & 1) << 8;
        ip += 2;
    }
    *dumpsPtr = ip;
    ip += dumpsLength;
    *dumpsLengthPtr = dumpsLength;

    /* check */
    if (ip > iend-3) return ERROR(srcSize_wrong); /* min : all 3 are "raw", hence no header, but at least xxLog bits per type */

    /* sequences */
    {
        S16 norm[MaxML+1];    /* assumption : MaxML >= MaxLL >= MaxOff */
        size_t headerSize;

        /* Build DTables */
        switch(LLtype)
        {
        case bt_rle :
            LLlog = 0;
            FSE_buildDTable_rle(DTableLL, *ip++); break;
        case bt_raw :
            LLlog = LLbits;
            FSE_buildDTable_raw(DTableLL, LLbits); break;
        default :
            {   U32 max = MaxLL;
                headerSize = FSE_readNCount(norm, &max, &LLlog, ip, iend-ip);
                if (FSE_isError(headerSize)) return ERROR(GENERIC);
                if (LLlog > LLFSELog) return ERROR(corruption_detected);
                ip += headerSize;
                FSE_buildDTable(DTableLL, norm, max, LLlog);
        }   }

        switch(Offtype)
        {
        case bt_rle :
            Offlog = 0;
            if (ip > iend-2) return ERROR(srcSize_wrong);   /* min : "raw", hence no header, but at least xxLog bits */
            FSE_buildDTable_rle(DTableOffb, *ip++ & MaxOff); /* if *ip > MaxOff, data is corrupted */
            break;
        case bt_raw :
            Offlog = Offbits;
            FSE_buildDTable_raw(DTableOffb, Offbits); break;
        default :
            {   U32 max = MaxOff;
                headerSize = FSE_readNCount(norm, &max, &Offlog, ip, iend-ip);
                if (FSE_isError(headerSize)) return ERROR(GENERIC);
                if (Offlog > OffFSELog) return ERROR(corruption_detected);
                ip += headerSize;
                FSE_buildDTable(DTableOffb, norm, max, Offlog);
        }   }

        switch(MLtype)
        {
        case bt_rle :
            MLlog = 0;
            if (ip > iend-2) return ERROR(srcSize_wrong); /* min : "raw", hence no header, but at least xxLog bits */
            FSE_buildDTable_rle(DTableML, *ip++); break;
        case bt_raw :
            MLlog = MLbits;
            FSE_buildDTable_raw(DTableML, MLbits); break;
        default :
            {   U32 max = MaxML;
                headerSize = FSE_readNCount(norm, &max, &MLlog, ip, iend-ip);
                if (FSE_isError(headerSize)) return ERROR(GENERIC);
                if (MLlog > MLFSELog) return ERROR(corruption_detected);
                ip += headerSize;
                FSE_buildDTable(DTableML, norm, max, MLlog);
    }   }   }

    return ip-istart;
}


typedef struct {
    size_t litLength;
    size_t offset;
    size_t matchLength;
} seq_t;

typedef struct {
    BIT_DStream_t DStream;
    FSE_DState_t stateLL;
    FSE_DState_t stateOffb;
    FSE_DState_t stateML;
    size_t prevOffset;
    const BYTE* dumps;
    const BYTE* dumpsEnd;
} seqState_t;


static void ZSTD_decodeSequence(seq_t* seq, seqState_t* seqState)
{
    size_t litLength;
    size_t prevOffset;
    size_t offset;
    size_t matchLength;
    const BYTE* dumps = seqState->dumps;
    const BYTE* const de = seqState->dumpsEnd;

    /* Literal length */
    litLength = FSE_decodeSymbol(&(seqState->stateLL), &(seqState->DStream));
    prevOffset = litLength ? seq->offset : seqState->prevOffset;
    if (litLength == MaxLL) {
        U32 add = *dumps++;
        if (add < 255) litLength += add;
        else {
            litLength = dumps[0] + (dumps[1]<<8) + (dumps[2]<<16);
            dumps += 3;
        }
        if (dumps > de) { litLength = MaxLL+255; }  /* late correction, to avoid using uninitialized memory */
        if (dumps >= de) { dumps = de-1; }  /* late correction, to avoid read overflow (data is now corrupted anyway) */
    }

    /* Offset */
    {   static const U32 offsetPrefix[MaxOff+1] = {
                1 /*fake*/, 1, 2, 4, 8, 16, 32, 64, 128, 256,
                512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144,
                524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, /*fake*/ 1, 1, 1, 1, 1 };
        U32 offsetCode, nbBits;
        offsetCode = FSE_decodeSymbol(&(seqState->stateOffb), &(seqState->DStream));   /* <= maxOff, by table construction */
        if (MEM_32bits()) BIT_reloadDStream(&(seqState->DStream));
        nbBits = offsetCode - 1;
        if (offsetCode==0) nbBits = 0;   /* cmove */
        offset = offsetPrefix[offsetCode] + BIT_readBits(&(seqState->DStream), nbBits);
        if (MEM_32bits()) BIT_reloadDStream(&(seqState->DStream));
        if (offsetCode==0) offset = prevOffset;   /* cmove */
        if (offsetCode | !litLength) seqState->prevOffset = seq->offset;   /* cmove */
    }

    /* MatchLength */
    matchLength = FSE_decodeSymbol(&(seqState->stateML), &(seqState->DStream));
    if (matchLength == MaxML) {
        U32 add = *dumps++;
        if (add < 255) matchLength += add;
        else {
            matchLength = dumps[0] + (dumps[1]<<8) + (dumps[2]<<16);
            dumps += 3;
        }
        if (dumps > de) { matchLength = MaxML+255; }  /* late correction, to avoid using uninitialized memory */
        if (dumps >= de) { dumps = de-1; }  /* late correction, to avoid read overflow (data is now corrupted anyway) */
    }
    matchLength += MINMATCH;

    /* save result */
    seq->litLength = litLength;
    seq->offset = offset;
    seq->matchLength = matchLength;
    seqState->dumps = dumps;
}


static size_t ZSTD_execSequence(BYTE* op,
                                BYTE* const oend, seq_t sequence,
                                const BYTE** litPtr, const BYTE* const litLimit,
                                const BYTE* const base, const BYTE* const vBase, const BYTE* const dictEnd)
{
    static const int dec32table[] = { 0, 1, 2, 1, 4, 4, 4, 4 };   /* added */
    static const int dec64table[] = { 8, 8, 8, 7, 8, 9,10,11 };   /* substracted */
    BYTE* const oLitEnd = op + sequence.litLength;
    const size_t sequenceLength = sequence.litLength + sequence.matchLength;
    BYTE* const oMatchEnd = op + sequenceLength;   /* risk : address space overflow (32-bits) */
    BYTE* const oend_8 = oend-8;
    const BYTE* const litEnd = *litPtr + sequence.litLength;
    const BYTE* match = oLitEnd - sequence.offset;

    /* check */
    if (oLitEnd > oend_8) return ERROR(dstSize_tooSmall);   /* last match must start at a minimum distance of 8 from oend */
    if (oMatchEnd > oend) return ERROR(dstSize_tooSmall);   /* overwrite beyond dst buffer */
    if (litEnd > litLimit) return ERROR(corruption_detected);   /* risk read beyond lit buffer */

    /* copy Literals */
    ZSTD_wildcopy(op, *litPtr, sequence.litLength);   /* note : oLitEnd <= oend-8 : no risk of overwrite beyond oend */
    op = oLitEnd;
    *litPtr = litEnd;   /* update for next sequence */

    /* copy Match */
    if (sequence.offset > (size_t)(oLitEnd - base))
    {
        /* offset beyond prefix */
        if (sequence.offset > (size_t)(oLitEnd - vBase))
            return ERROR(corruption_detected);
        match = dictEnd - (base-match);
        if (match + sequence.matchLength <= dictEnd)
        {
            memmove(oLitEnd, match, sequence.matchLength);
            return sequenceLength;
        }
        /* span extDict & currentPrefixSegment */
        {
            size_t length1 = dictEnd - match;
            memmove(oLitEnd, match, length1);
            op = oLitEnd + length1;
            sequence.matchLength -= length1;
            match = base;
            if (op > oend_8 || sequence.matchLength < MINMATCH) {
              while (op < oMatchEnd) *op++ = *match++;
              return sequenceLength;
            }
        }
    }
    /* Requirement: op <= oend_8 */

    /* match within prefix */
    if (sequence.offset < 8) {
        /* close range match, overlap */
        const int sub2 = dec64table[sequence.offset];
        op[0] = match[0];
        op[1] = match[1];
        op[2] = match[2];
        op[3] = match[3];
        match += dec32table[sequence.offset];
        ZSTD_copy4(op+4, match);
        match -= sub2;
    } else {
        ZSTD_copy8(op, match);
    }
    op += 8; match += 8;

    if (oMatchEnd > oend-(16-MINMATCH))
    {
        if (op < oend_8)
        {
            ZSTD_wildcopy(op, match, oend_8 - op);
            match += oend_8 - op;
            op = oend_8;
        }
        while (op < oMatchEnd) *op++ = *match++;
    }
    else
    {
        ZSTD_wildcopy(op, match, (ptrdiff_t)sequence.matchLength-8);   /* works even if matchLength < 8, but must be signed */
    }
    return sequenceLength;
}


static size_t ZSTD_decompressSequences(
                               ZSTD_DCtx* dctx,
                               void* dst, size_t maxDstSize,
                         const void* seqStart, size_t seqSize)
{
    const BYTE* ip = (const BYTE*)seqStart;
    const BYTE* const iend = ip + seqSize;
    BYTE* const ostart = (BYTE* const)dst;
    BYTE* op = ostart;
    BYTE* const oend = ostart + maxDstSize;
    size_t errorCode, dumpsLength;
    const BYTE* litPtr = dctx->litPtr;
    const BYTE* const litEnd = litPtr + dctx->litSize;
    int nbSeq;
    const BYTE* dumps;
    U32* DTableLL = dctx->LLTable;
    U32* DTableML = dctx->MLTable;
    U32* DTableOffb = dctx->OffTable;
    const BYTE* const base = (const BYTE*) (dctx->base);
    const BYTE* const vBase = (const BYTE*) (dctx->vBase);
    const BYTE* const dictEnd = (const BYTE*) (dctx->dictEnd);

    /* Build Decoding Tables */
    errorCode = ZSTD_decodeSeqHeaders(&nbSeq, &dumps, &dumpsLength,
                                      DTableLL, DTableML, DTableOffb,
                                      ip, iend-ip);
    if (ZSTD_isError(errorCode)) return errorCode;
    ip += errorCode;

    /* Regen sequences */
    {
        seq_t sequence;
        seqState_t seqState;

        memset(&sequence, 0, sizeof(sequence));
        sequence.offset = 4;
        seqState.dumps = dumps;
        seqState.dumpsEnd = dumps + dumpsLength;
        seqState.prevOffset = 4;
        errorCode = BIT_initDStream(&(seqState.DStream), ip, iend-ip);
        if (ERR_isError(errorCode)) return ERROR(corruption_detected);
        FSE_initDState(&(seqState.stateLL), &(seqState.DStream), DTableLL);
        FSE_initDState(&(seqState.stateOffb), &(seqState.DStream), DTableOffb);
        FSE_initDState(&(seqState.stateML), &(seqState.DStream), DTableML);

        for ( ; (BIT_reloadDStream(&(seqState.DStream)) <= BIT_DStream_completed) && nbSeq ; )
        {
            size_t oneSeqSize;
            nbSeq--;
            ZSTD_decodeSequence(&sequence, &seqState);
            oneSeqSize = ZSTD_execSequence(op, oend, sequence, &litPtr, litEnd, base, vBase, dictEnd);
            if (ZSTD_isError(oneSeqSize)) return oneSeqSize;
            op += oneSeqSize;
        }

        /* check if reached exact end */
        if ( !BIT_endOfDStream(&(seqState.DStream)) ) return ERROR(corruption_detected);   /* DStream should be entirely and exactly consumed; otherwise data is corrupted */

        /* last literal segment */
        {
            size_t lastLLSize = litEnd - litPtr;
            if (litPtr > litEnd) return ERROR(corruption_detected);
            if (op+lastLLSize > oend) return ERROR(dstSize_tooSmall);
            if (op != litPtr) memcpy(op, litPtr, lastLLSize);
            op += lastLLSize;
        }
    }

    return op-ostart;
}


static void ZSTD_checkContinuity(ZSTD_DCtx* dctx, const void* dst)
{
    if (dst != dctx->previousDstEnd)   /* not contiguous */
    {
        dctx->dictEnd = dctx->previousDstEnd;
        dctx->vBase = (const char*)dst - ((const char*)(dctx->previousDstEnd) - (const char*)(dctx->base));
        dctx->base = dst;
        dctx->previousDstEnd = dst;
    }
}


static size_t ZSTD_decompressBlock_internal(ZSTD_DCtx* dctx,
                            void* dst, size_t maxDstSize,
                      const void* src, size_t srcSize)
{
    /* blockType == blockCompressed */
    const BYTE* ip = (const BYTE*)src;

    /* Decode literals sub-block */
    size_t litCSize = ZSTD_decodeLiteralsBlock(dctx, src, srcSize);
    if (ZSTD_isError(litCSize)) return litCSize;
    ip += litCSize;
    srcSize -= litCSize;

    return ZSTD_decompressSequences(dctx, dst, maxDstSize, ip, srcSize);
}


static size_t ZSTD_decompress_usingDict(ZSTD_DCtx* ctx,
                                 void* dst, size_t maxDstSize,
                                 const void* src, size_t srcSize,
                                 const void* dict, size_t dictSize)
{
    const BYTE* ip = (const BYTE*)src;
    const BYTE* iend = ip + srcSize;
    BYTE* const ostart = (BYTE* const)dst;
    BYTE* op = ostart;
    BYTE* const oend = ostart + maxDstSize;
    size_t remainingSize = srcSize;
    blockProperties_t blockProperties;

    /* init */
    ZSTD_resetDCtx(ctx);
    if (dict)
    {
        ZSTD_decompress_insertDictionary(ctx, dict, dictSize);
        ctx->dictEnd = ctx->previousDstEnd;
        ctx->vBase = (const char*)dst - ((const char*)(ctx->previousDstEnd) - (const char*)(ctx->base));
        ctx->base = dst;
    }
    else
    {
        ctx->vBase = ctx->base = ctx->dictEnd = dst;
    }

    /* Frame Header */
    {
        size_t frameHeaderSize;
        if (srcSize < ZSTD_frameHeaderSize_min+ZSTD_blockHeaderSize) return ERROR(srcSize_wrong);
        frameHeaderSize = ZSTD_decodeFrameHeader_Part1(ctx, src, ZSTD_frameHeaderSize_min);
        if (ZSTD_isError(frameHeaderSize)) return frameHeaderSize;
        if (srcSize < frameHeaderSize+ZSTD_blockHeaderSize) return ERROR(srcSize_wrong);
        ip += frameHeaderSize; remainingSize -= frameHeaderSize;
        frameHeaderSize = ZSTD_decodeFrameHeader_Part2(ctx, src, frameHeaderSize);
        if (ZSTD_isError(frameHeaderSize)) return frameHeaderSize;
    }

    /* Loop on each block */
    while (1)
    {
        size_t decodedSize=0;
        size_t cBlockSize = ZSTD_getcBlockSize(ip, iend-ip, &blockProperties);
        if (ZSTD_isError(cBlockSize)) return cBlockSize;

        ip += ZSTD_blockHeaderSize;
        remainingSize -= ZSTD_blockHeaderSize;
        if (cBlockSize > remainingSize) return ERROR(srcSize_wrong);

        switch(blockProperties.blockType)
        {
        case bt_compressed:
            decodedSize = ZSTD_decompressBlock_internal(ctx, op, oend-op, ip, cBlockSize);
            break;
        case bt_raw :
            decodedSize = ZSTD_copyRawBlock(op, oend-op, ip, cBlockSize);
            break;
        case bt_rle :
            return ERROR(GENERIC);   /* not yet supported */
            break;
        case bt_end :
            /* end of frame */
            if (remainingSize) return ERROR(srcSize_wrong);
            break;
        default:
            return ERROR(GENERIC);   /* impossible */
        }
        if (cBlockSize == 0) break;   /* bt_end */

        if (ZSTD_isError(decodedSize)) return decodedSize;
        op += decodedSize;
        ip += cBlockSize;
        remainingSize -= cBlockSize;
    }

    return op-ostart;
}

static size_t ZSTD_findFrameCompressedSize(const void* src, size_t srcSize)
{
    const BYTE* ip = (const BYTE*)src;
    size_t remainingSize = srcSize;
    blockProperties_t blockProperties;

    /* Frame Header */
    if (srcSize < ZSTD_frameHeaderSize_min) return ERROR(srcSize_wrong);
    if (MEM_readLE32(src) != ZSTD_MAGICNUMBER) return ERROR(prefix_unknown);
    ip += ZSTD_frameHeaderSize_min; remainingSize -= ZSTD_frameHeaderSize_min;

    /* Loop on each block */
    while (1)
    {
        size_t cBlockSize = ZSTD_getcBlockSize(ip, remainingSize, &blockProperties);
        if (ZSTD_isError(cBlockSize)) return cBlockSize;

        ip += ZSTD_blockHeaderSize;
        remainingSize -= ZSTD_blockHeaderSize;
        if (cBlockSize > remainingSize) return ERROR(srcSize_wrong);

        if (cBlockSize == 0) break;   /* bt_end */

        ip += cBlockSize;
        remainingSize -= cBlockSize;
    }

    return ip - (const BYTE*)src;
}

/* ******************************
*  Streaming Decompression API
********************************/
static size_t ZSTD_nextSrcSizeToDecompress(ZSTD_DCtx* dctx)
{
    return dctx->expected;
}

static size_t ZSTD_decompressContinue(ZSTD_DCtx* ctx, void* dst, size_t maxDstSize, const void* src, size_t srcSize)
{
    /* Sanity check */
    if (srcSize != ctx->expected) return ERROR(srcSize_wrong);
    ZSTD_checkContinuity(ctx, dst);

    /* Decompress : frame header; part 1 */
    switch (ctx->stage)
    {
    case ZSTDds_getFrameHeaderSize :
        /* get frame header size */
        if (srcSize != ZSTD_frameHeaderSize_min) return ERROR(srcSize_wrong);   /* impossible */
        ctx->headerSize = ZSTD_decodeFrameHeader_Part1(ctx, src, ZSTD_frameHeaderSize_min);
        if (ZSTD_isError(ctx->headerSize)) return ctx->headerSize;
        memcpy(ctx->headerBuffer, src, ZSTD_frameHeaderSize_min);
        if (ctx->headerSize > ZSTD_frameHeaderSize_min) return ERROR(GENERIC);   /* impossible */
        ctx->expected = 0;   /* not necessary to copy more */
        /* fallthrough */
    case ZSTDds_decodeFrameHeader:
        /* get frame header */
        {   size_t const result = ZSTD_decodeFrameHeader_Part2(ctx, ctx->headerBuffer, ctx->headerSize);
            if (ZSTD_isError(result)) return result;
            ctx->expected = ZSTD_blockHeaderSize;
            ctx->stage = ZSTDds_decodeBlockHeader;
            return 0;
        }
    case ZSTDds_decodeBlockHeader:
        /* Decode block header */
        {   blockProperties_t bp;
            size_t const blockSize = ZSTD_getcBlockSize(src, ZSTD_blockHeaderSize, &bp);
            if (ZSTD_isError(blockSize)) return blockSize;
            if (bp.blockType == bt_end)
            {
                ctx->expected = 0;
                ctx->stage = ZSTDds_getFrameHeaderSize;
            }
            else
            {
                ctx->expected = blockSize;
                ctx->bType = bp.blockType;
                ctx->stage = ZSTDds_decompressBlock;
            }
            return 0;
        }
    case ZSTDds_decompressBlock:
        {
            /* Decompress : block content */
            size_t rSize;
            switch(ctx->bType)
            {
            case bt_compressed:
                rSize = ZSTD_decompressBlock_internal(ctx, dst, maxDstSize, src, srcSize);
                break;
            case bt_raw :
                rSize = ZSTD_copyRawBlock(dst, maxDstSize, src, srcSize);
                break;
            case bt_rle :
                return ERROR(GENERIC);   /* not yet handled */
                break;
            case bt_end :   /* should never happen (filtered at phase 1) */
                rSize = 0;
                break;
            default:
                return ERROR(GENERIC);
            }
            ctx->stage = ZSTDds_decodeBlockHeader;
            ctx->expected = ZSTD_blockHeaderSize;
            ctx->previousDstEnd = (char*)dst + rSize;
            return rSize;
        }
    default:
        return ERROR(GENERIC);   /* impossible */
    }
}


static void ZSTD_decompress_insertDictionary(ZSTD_DCtx* ctx, const void* dict, size_t dictSize)
{
    ctx->dictEnd = ctx->previousDstEnd;
    ctx->vBase = (const char*)dict - ((const char*)(ctx->previousDstEnd) - (const char*)(ctx->base));
    ctx->base = dict;
    ctx->previousDstEnd = (const char*)dict + dictSize;
}



/*
    Buffered version of Zstd compression library
    Copyright (C) 2015, Yann Collet.

    BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)

    Redistribution and use in source and binary forms, with or without
    modification, are permitted provided that the following conditions are
    met:
    * Redistributions of source code must retain the above copyright
    notice, this list of conditions and the following disclaimer.
    * Redistributions in binary form must reproduce the above
    copyright notice, this list of conditions and the following disclaimer
    in the documentation and/or other materials provided with the
    distribution.
    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
    "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
    LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
    A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
    OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
    SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
    LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
    DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
    THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
    (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
    OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

    You can contact the author at :
    - zstd source repository : https://github.com/Cyan4973/zstd
    - ztsd public forum : https://groups.google.com/forum/#!forum/lz4c
*/

/* The objects defined into this file should be considered experimental.
 * They are not labelled stable, as their prototype may change in the future.
 * You can use them for tests, provide feedback, or if you can endure risk of future changes.
 */

/* *************************************
*  Includes
***************************************/
#include <stdlib.h>


/** ************************************************
*  Streaming decompression
*
*  A ZBUFF_DCtx object is required to track streaming operation.
*  Use ZBUFF_createDCtx() and ZBUFF_freeDCtx() to create/release resources.
*  Use ZBUFF_decompressInit() to start a new decompression operation.
*  ZBUFF_DCtx objects can be reused multiple times.
*
*  Use ZBUFF_decompressContinue() repetitively to consume your input.
*  *srcSizePtr and *maxDstSizePtr can be any size.
*  The function will report how many bytes were read or written by modifying *srcSizePtr and *maxDstSizePtr.
*  Note that it may not consume the entire input, in which case it's up to the caller to call again the function with remaining input.
*  The content of dst will be overwritten (up to *maxDstSizePtr) at each function call, so save its content if it matters or change dst .
*  return : a hint to preferred nb of bytes to use as input for next function call (it's only a hint, to improve latency)
*            or 0 when a frame is completely decoded
*            or an error code, which can be tested using ZBUFF_isError().
*
*  Hint : recommended buffer sizes (not compulsory)
*  output : 128 KB block size is the internal unit, it ensures it's always possible to write a full block when it's decoded.
*  input : just follow indications from ZBUFF_decompressContinue() to minimize latency. It should always be <= 128 KB + 3 .
* **************************************************/

typedef enum { ZBUFFds_init, ZBUFFds_readHeader, ZBUFFds_loadHeader, ZBUFFds_decodeHeader,
               ZBUFFds_read, ZBUFFds_load, ZBUFFds_flush } ZBUFF_dStage;

/* *** Resource management *** */

#define ZSTD_frameHeaderSize_max 5   /* too magical, should come from reference */
struct ZBUFFv04_DCtx_s {
    ZSTD_DCtx* zc;
    ZSTD_parameters params;
    char* inBuff;
    size_t inBuffSize;
    size_t inPos;
    char* outBuff;
    size_t outBuffSize;
    size_t outStart;
    size_t outEnd;
    size_t hPos;
    const char* dict;
    size_t dictSize;
    ZBUFF_dStage stage;
    unsigned char headerBuffer[ZSTD_frameHeaderSize_max];
};   /* typedef'd to ZBUFF_DCtx within "zstd_buffered.h" */

typedef ZBUFFv04_DCtx ZBUFF_DCtx;


static ZBUFF_DCtx* ZBUFF_createDCtx(void)
{
    ZBUFF_DCtx* zbc = (ZBUFF_DCtx*)malloc(sizeof(ZBUFF_DCtx));
    if (zbc==NULL) return NULL;
    memset(zbc, 0, sizeof(*zbc));
    zbc->zc = ZSTD_createDCtx();
    zbc->stage = ZBUFFds_init;
    return zbc;
}

static size_t ZBUFF_freeDCtx(ZBUFF_DCtx* zbc)
{
    if (zbc==NULL) return 0;   /* support free on null */
    ZSTD_freeDCtx(zbc->zc);
    free(zbc->inBuff);
    free(zbc->outBuff);
    free(zbc);
    return 0;
}


/* *** Initialization *** */

static size_t ZBUFF_decompressInit(ZBUFF_DCtx* zbc)
{
    zbc->stage = ZBUFFds_readHeader;
    zbc->hPos = zbc->inPos = zbc->outStart = zbc->outEnd = zbc->dictSize = 0;
    return ZSTD_resetDCtx(zbc->zc);
}


static size_t ZBUFF_decompressWithDictionary(ZBUFF_DCtx* zbc, const void* src, size_t srcSize)
{
    zbc->dict = (const char*)src;
    zbc->dictSize = srcSize;
    return 0;
}

static size_t ZBUFF_limitCopy(void* dst, size_t maxDstSize, const void* src, size_t srcSize)
{
    size_t length = MIN(maxDstSize, srcSize);
    memcpy(dst, src, length);
    return length;
}

/* *** Decompression *** */

static size_t ZBUFF_decompressContinue(ZBUFF_DCtx* zbc, void* dst, size_t* maxDstSizePtr, const void* src, size_t* srcSizePtr)
{
    const char* const istart = (const char*)src;
    const char* ip = istart;
    const char* const iend = istart + *srcSizePtr;
    char* const ostart = (char*)dst;
    char* op = ostart;
    char* const oend = ostart + *maxDstSizePtr;
    U32 notDone = 1;

    DEBUGLOG(5, "ZBUFF_decompressContinue");
    while (notDone)
    {
        switch(zbc->stage)
        {

        case ZBUFFds_init :
            DEBUGLOG(5, "ZBUFF_decompressContinue: stage==ZBUFFds_init => ERROR(init_missing)");
            return ERROR(init_missing);

        case ZBUFFds_readHeader :
            /* read header from src */
            {   size_t const headerSize = ZSTD_getFrameParams(&(zbc->params), src, *srcSizePtr);
                if (ZSTD_isError(headerSize)) return headerSize;
                if (headerSize) {
                    /* not enough input to decode header : tell how many bytes would be necessary */
                    memcpy(zbc->headerBuffer+zbc->hPos, src, *srcSizePtr);
                    zbc->hPos += *srcSizePtr;
                    *maxDstSizePtr = 0;
                    zbc->stage = ZBUFFds_loadHeader;
                    return headerSize - zbc->hPos;
                }
                zbc->stage = ZBUFFds_decodeHeader;
                break;
            }

        case ZBUFFds_loadHeader:
            /* complete header from src */
            {   size_t headerSize = ZBUFF_limitCopy(
                    zbc->headerBuffer + zbc->hPos, ZSTD_frameHeaderSize_max - zbc->hPos,
                    src, *srcSizePtr);
                zbc->hPos += headerSize;
                ip += headerSize;
                headerSize = ZSTD_getFrameParams(&(zbc->params), zbc->headerBuffer, zbc->hPos);
                if (ZSTD_isError(headerSize)) return headerSize;
                if (headerSize) {
                    /* not enough input to decode header : tell how many bytes would be necessary */
                    *maxDstSizePtr = 0;
                    return headerSize - zbc->hPos;
            }   }
            /* intentional fallthrough */

        case ZBUFFds_decodeHeader:
                /* apply header to create / resize buffers */
                {   size_t const neededOutSize = (size_t)1 << zbc->params.windowLog;
                    size_t const neededInSize = BLOCKSIZE;   /* a block is never > BLOCKSIZE */
                    if (zbc->inBuffSize < neededInSize) {
                        free(zbc->inBuff);
                        zbc->inBuffSize = neededInSize;
                        zbc->inBuff = (char*)malloc(neededInSize);
                        if (zbc->inBuff == NULL) return ERROR(memory_allocation);
                    }
                    if (zbc->outBuffSize < neededOutSize) {
                        free(zbc->outBuff);
                        zbc->outBuffSize = neededOutSize;
                        zbc->outBuff = (char*)malloc(neededOutSize);
                        if (zbc->outBuff == NULL) return ERROR(memory_allocation);
                }   }
                if (zbc->dictSize)
                    ZSTD_decompress_insertDictionary(zbc->zc, zbc->dict, zbc->dictSize);
                if (zbc->hPos) {
                    /* some data already loaded into headerBuffer : transfer into inBuff */
                    memcpy(zbc->inBuff, zbc->headerBuffer, zbc->hPos);
                    zbc->inPos = zbc->hPos;
                    zbc->hPos = 0;
                    zbc->stage = ZBUFFds_load;
                    break;
                }
                zbc->stage = ZBUFFds_read;
		/* fall-through */
        case ZBUFFds_read:
            {
                size_t neededInSize = ZSTD_nextSrcSizeToDecompress(zbc->zc);
                if (neededInSize==0)   /* end of frame */
                {
                    zbc->stage = ZBUFFds_init;
                    notDone = 0;
                    break;
                }
                if ((size_t)(iend-ip) >= neededInSize)
                {
                    /* directly decode from src */
                    size_t decodedSize = ZSTD_decompressContinue(zbc->zc,
                        zbc->outBuff + zbc->outStart, zbc->outBuffSize - zbc->outStart,
                        ip, neededInSize);
                    if (ZSTD_isError(decodedSize)) return decodedSize;
                    ip += neededInSize;
                    if (!decodedSize) break;   /* this was just a header */
                    zbc->outEnd = zbc->outStart +  decodedSize;
                    zbc->stage = ZBUFFds_flush;
                    break;
                }
                if (ip==iend) { notDone = 0; break; }   /* no more input */
                zbc->stage = ZBUFFds_load;
            }
	    /* fall-through */
        case ZBUFFds_load:
            {
                size_t neededInSize = ZSTD_nextSrcSizeToDecompress(zbc->zc);
                size_t toLoad = neededInSize - zbc->inPos;   /* should always be <= remaining space within inBuff */
                size_t loadedSize;
                if (toLoad > zbc->inBuffSize - zbc->inPos) return ERROR(corruption_detected);   /* should never happen */
                loadedSize = ZBUFF_limitCopy(zbc->inBuff + zbc->inPos, toLoad, ip, iend-ip);
                ip += loadedSize;
                zbc->inPos += loadedSize;
                if (loadedSize < toLoad) { notDone = 0; break; }   /* not enough input, wait for more */
                {
                    size_t decodedSize = ZSTD_decompressContinue(zbc->zc,
                        zbc->outBuff + zbc->outStart, zbc->outBuffSize - zbc->outStart,
                        zbc->inBuff, neededInSize);
                    if (ZSTD_isError(decodedSize)) return decodedSize;
                    zbc->inPos = 0;   /* input is consumed */
                    if (!decodedSize) { zbc->stage = ZBUFFds_read; break; }   /* this was just a header */
                    zbc->outEnd = zbc->outStart +  decodedSize;
                    zbc->stage = ZBUFFds_flush;
                    /* ZBUFFds_flush follows */
                }
            }
	    /* fall-through */
        case ZBUFFds_flush:
            {
                size_t toFlushSize = zbc->outEnd - zbc->outStart;
                size_t flushedSize = ZBUFF_limitCopy(op, oend-op, zbc->outBuff + zbc->outStart, toFlushSize);
                op += flushedSize;
                zbc->outStart += flushedSize;
                if (flushedSize == toFlushSize)
                {
                    zbc->stage = ZBUFFds_read;
                    if (zbc->outStart + BLOCKSIZE > zbc->outBuffSize)
                        zbc->outStart = zbc->outEnd = 0;
                    break;
                }
                /* cannot flush everything */
                notDone = 0;
                break;
            }
        default: return ERROR(GENERIC);   /* impossible */
        }
    }

    *srcSizePtr = ip-istart;
    *maxDstSizePtr = op-ostart;

    {
        size_t nextSrcSizeHint = ZSTD_nextSrcSizeToDecompress(zbc->zc);
        if (nextSrcSizeHint > 3) nextSrcSizeHint+= 3;   /* get the next block header while at it */
        nextSrcSizeHint -= zbc->inPos;   /* already loaded*/
        return nextSrcSizeHint;
    }
}


/* *************************************
*  Tool functions
***************************************/
unsigned ZBUFFv04_isError(size_t errorCode) { return ERR_isError(errorCode); }
const char* ZBUFFv04_getErrorName(size_t errorCode) { return ERR_getErrorName(errorCode); }

size_t ZBUFFv04_recommendedDInSize()  { return BLOCKSIZE + 3; }
size_t ZBUFFv04_recommendedDOutSize() { return BLOCKSIZE; }



/*- ========================================================================= -*/

/* final wrapping stage */

size_t ZSTDv04_decompressDCtx(ZSTD_DCtx* dctx, void* dst, size_t maxDstSize, const void* src, size_t srcSize)
{
    return ZSTD_decompress_usingDict(dctx, dst, maxDstSize, src, srcSize, NULL, 0);
}

size_t ZSTDv04_decompress(void* dst, size_t maxDstSize, const void* src, size_t srcSize)
{
#if defined(ZSTD_HEAPMODE) && (ZSTD_HEAPMODE==1)
    size_t regenSize;
    ZSTD_DCtx* dctx = ZSTD_createDCtx();
    if (dctx==NULL) return ERROR(memory_allocation);
    regenSize = ZSTDv04_decompressDCtx(dctx, dst, maxDstSize, src, srcSize);
    ZSTD_freeDCtx(dctx);
    return regenSize;
#else
    ZSTD_DCtx dctx;
    return ZSTDv04_decompressDCtx(&dctx, dst, maxDstSize, src, srcSize);
#endif
}

size_t ZSTDv04_findFrameCompressedSize(const void* src, size_t srcSize)
{
    return ZSTD_findFrameCompressedSize(src, srcSize);
}

size_t ZSTDv04_resetDCtx(ZSTDv04_Dctx* dctx) { return ZSTD_resetDCtx(dctx); }

size_t ZSTDv04_nextSrcSizeToDecompress(ZSTDv04_Dctx* dctx)
{
    return ZSTD_nextSrcSizeToDecompress(dctx);
}

size_t ZSTDv04_decompressContinue(ZSTDv04_Dctx* dctx, void* dst, size_t maxDstSize, const void* src, size_t srcSize)
{
    return ZSTD_decompressContinue(dctx, dst, maxDstSize, src, srcSize);
}



ZBUFFv04_DCtx* ZBUFFv04_createDCtx(void) { return ZBUFF_createDCtx(); }
size_t ZBUFFv04_freeDCtx(ZBUFFv04_DCtx* dctx) { return ZBUFF_freeDCtx(dctx); }

size_t ZBUFFv04_decompressInit(ZBUFFv04_DCtx* dctx) { return ZBUFF_decompressInit(dctx); }
size_t ZBUFFv04_decompressWithDictionary(ZBUFFv04_DCtx* dctx, const void* src, size_t srcSize)
{ return ZBUFF_decompressWithDictionary(dctx, src, srcSize); }

size_t ZBUFFv04_decompressContinue(ZBUFFv04_DCtx* dctx, void* dst, size_t* maxDstSizePtr, const void* src, size_t* srcSizePtr)
{
    DEBUGLOG(5, "ZBUFFv04_decompressContinue");
    return ZBUFF_decompressContinue(dctx, dst, maxDstSizePtr, src, srcSizePtr);
}

ZSTD_DCtx* ZSTDv04_createDCtx(void) { return ZSTD_createDCtx(); }
size_t ZSTDv04_freeDCtx(ZSTD_DCtx* dctx) { return ZSTD_freeDCtx(dctx); }