compress_fragment_two_pass.go 21.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
package brotli

import "encoding/binary"

/* Copyright 2015 Google Inc. All Rights Reserved.

   Distributed under MIT license.
   See file LICENSE for detail or copy at https://opensource.org/licenses/MIT
*/

/* Function for fast encoding of an input fragment, independently from the input
   history. This function uses two-pass processing: in the first pass we save
   the found backward matches and literal bytes into a buffer, and in the
   second pass we emit them into the bit stream using prefix codes built based
   on the actual command and literal byte histograms. */

const kCompressFragmentTwoPassBlockSize uint = 1 << 17

func hash1(p []byte, shift uint, length uint) uint32 {
	var h uint64 = (binary.LittleEndian.Uint64(p) << ((8 - length) * 8)) * uint64(kHashMul32)
	return uint32(h >> shift)
}

func hashBytesAtOffset(v uint64, offset uint, shift uint, length uint) uint32 {
	assert(offset <= 8-length)
	{
		var h uint64 = ((v >> (8 * offset)) << ((8 - length) * 8)) * uint64(kHashMul32)
		return uint32(h >> shift)
	}
}

func isMatch1(p1 []byte, p2 []byte, length uint) bool {
	var i uint
	for i = 0; i < length && i < 6; i++ {
		if p1[i] != p2[i] {
			return false
		}
	}

	return true
}

/* Builds a command and distance prefix code (each 64 symbols) into "depth" and
   "bits" based on "histogram" and stores it into the bit stream. */
func buildAndStoreCommandPrefixCode(histogram []uint32, depth []byte, bits []uint16, storage_ix *uint, storage []byte) {
	var tree [129]huffmanTree
	var cmd_depth = [numCommandSymbols]byte{0}
	/* Tree size for building a tree over 64 symbols is 2 * 64 + 1. */

	var cmd_bits [64]uint16
	createHuffmanTree(histogram, 64, 15, tree[:], depth)
	createHuffmanTree(histogram[64:], 64, 14, tree[:], depth[64:])

	/* We have to jump through a few hoops here in order to compute
	   the command bits because the symbols are in a different order than in
	   the full alphabet. This looks complicated, but having the symbols
	   in this order in the command bits saves a few branches in the Emit*
	   functions. */
	copy(cmd_depth[:], depth[24:][:24])

	copy(cmd_depth[24:][:], depth[:8])
	copy(cmd_depth[32:][:], depth[48:][:8])
	copy(cmd_depth[40:][:], depth[8:][:8])
	copy(cmd_depth[48:][:], depth[56:][:8])
	copy(cmd_depth[56:][:], depth[16:][:8])
	convertBitDepthsToSymbols(cmd_depth[:], 64, cmd_bits[:])
	copy(bits, cmd_bits[24:][:8])
	copy(bits[8:], cmd_bits[40:][:8])
	copy(bits[16:], cmd_bits[56:][:8])
	copy(bits[24:], cmd_bits[:24])
	copy(bits[48:], cmd_bits[32:][:8])
	copy(bits[56:], cmd_bits[48:][:8])
	convertBitDepthsToSymbols(depth[64:], 64, bits[64:])
	{
		/* Create the bit length array for the full command alphabet. */
		var i uint
		for i := 0; i < int(64); i++ {
			cmd_depth[i] = 0
		} /* only 64 first values were used */
		copy(cmd_depth[:], depth[24:][:8])
		copy(cmd_depth[64:][:], depth[32:][:8])
		copy(cmd_depth[128:][:], depth[40:][:8])
		copy(cmd_depth[192:][:], depth[48:][:8])
		copy(cmd_depth[384:][:], depth[56:][:8])
		for i = 0; i < 8; i++ {
			cmd_depth[128+8*i] = depth[i]
			cmd_depth[256+8*i] = depth[8+i]
			cmd_depth[448+8*i] = depth[16+i]
		}

		storeHuffmanTree(cmd_depth[:], numCommandSymbols, tree[:], storage_ix, storage)
	}

	storeHuffmanTree(depth[64:], 64, tree[:], storage_ix, storage)
}

func emitInsertLen(insertlen uint32, commands *[]uint32) {
	if insertlen < 6 {
		(*commands)[0] = insertlen
	} else if insertlen < 130 {
		var tail uint32 = insertlen - 2
		var nbits uint32 = log2FloorNonZero(uint(tail)) - 1
		var prefix uint32 = tail >> nbits
		var inscode uint32 = (nbits << 1) + prefix + 2
		var extra uint32 = tail - (prefix << nbits)
		(*commands)[0] = inscode | extra<<8
	} else if insertlen < 2114 {
		var tail uint32 = insertlen - 66
		var nbits uint32 = log2FloorNonZero(uint(tail))
		var code uint32 = nbits + 10
		var extra uint32 = tail - (1 << nbits)
		(*commands)[0] = code | extra<<8
	} else if insertlen < 6210 {
		var extra uint32 = insertlen - 2114
		(*commands)[0] = 21 | extra<<8
	} else if insertlen < 22594 {
		var extra uint32 = insertlen - 6210
		(*commands)[0] = 22 | extra<<8
	} else {
		var extra uint32 = insertlen - 22594
		(*commands)[0] = 23 | extra<<8
	}

	*commands = (*commands)[1:]
}

func emitCopyLen(copylen uint, commands *[]uint32) {
	if copylen < 10 {
		(*commands)[0] = uint32(copylen + 38)
	} else if copylen < 134 {
		var tail uint = copylen - 6
		var nbits uint = uint(log2FloorNonZero(tail) - 1)
		var prefix uint = tail >> nbits
		var code uint = (nbits << 1) + prefix + 44
		var extra uint = tail - (prefix << nbits)
		(*commands)[0] = uint32(code | extra<<8)
	} else if copylen < 2118 {
		var tail uint = copylen - 70
		var nbits uint = uint(log2FloorNonZero(tail))
		var code uint = nbits + 52
		var extra uint = tail - (uint(1) << nbits)
		(*commands)[0] = uint32(code | extra<<8)
	} else {
		var extra uint = copylen - 2118
		(*commands)[0] = uint32(63 | extra<<8)
	}

	*commands = (*commands)[1:]
}

func emitCopyLenLastDistance(copylen uint, commands *[]uint32) {
	if copylen < 12 {
		(*commands)[0] = uint32(copylen + 20)
		*commands = (*commands)[1:]
	} else if copylen < 72 {
		var tail uint = copylen - 8
		var nbits uint = uint(log2FloorNonZero(tail) - 1)
		var prefix uint = tail >> nbits
		var code uint = (nbits << 1) + prefix + 28
		var extra uint = tail - (prefix << nbits)
		(*commands)[0] = uint32(code | extra<<8)
		*commands = (*commands)[1:]
	} else if copylen < 136 {
		var tail uint = copylen - 8
		var code uint = (tail >> 5) + 54
		var extra uint = tail & 31
		(*commands)[0] = uint32(code | extra<<8)
		*commands = (*commands)[1:]
		(*commands)[0] = 64
		*commands = (*commands)[1:]
	} else if copylen < 2120 {
		var tail uint = copylen - 72
		var nbits uint = uint(log2FloorNonZero(tail))
		var code uint = nbits + 52
		var extra uint = tail - (uint(1) << nbits)
		(*commands)[0] = uint32(code | extra<<8)
		*commands = (*commands)[1:]
		(*commands)[0] = 64
		*commands = (*commands)[1:]
	} else {
		var extra uint = copylen - 2120
		(*commands)[0] = uint32(63 | extra<<8)
		*commands = (*commands)[1:]
		(*commands)[0] = 64
		*commands = (*commands)[1:]
	}
}

func emitDistance(distance uint32, commands *[]uint32) {
	var d uint32 = distance + 3
	var nbits uint32 = log2FloorNonZero(uint(d)) - 1
	var prefix uint32 = (d >> nbits) & 1
	var offset uint32 = (2 + prefix) << nbits
	var distcode uint32 = 2*(nbits-1) + prefix + 80
	var extra uint32 = d - offset
	(*commands)[0] = distcode | extra<<8
	*commands = (*commands)[1:]
}

/* REQUIRES: len <= 1 << 24. */
func storeMetaBlockHeader(len uint, is_uncompressed bool, storage_ix *uint, storage []byte) {
	var nibbles uint = 6

	/* ISLAST */
	writeBits(1, 0, storage_ix, storage)

	if len <= 1<<16 {
		nibbles = 4
	} else if len <= 1<<20 {
		nibbles = 5
	}

	writeBits(2, uint64(nibbles)-4, storage_ix, storage)
	writeBits(nibbles*4, uint64(len)-1, storage_ix, storage)

	/* ISUNCOMPRESSED */
	writeSingleBit(is_uncompressed, storage_ix, storage)
}

func createCommands(input []byte, block_size uint, input_size uint, base_ip_ptr []byte, table []int, table_bits uint, min_match uint, literals *[]byte, commands *[]uint32) {
	var ip int = 0
	var shift uint = 64 - table_bits
	var ip_end int = int(block_size)
	var base_ip int = -cap(base_ip_ptr) + cap(input)
	var next_emit int = 0
	var last_distance int = -1
	/* "ip" is the input pointer. */

	const kInputMarginBytes uint = windowGap

	/* "next_emit" is a pointer to the first byte that is not covered by a
	   previous copy. Bytes between "next_emit" and the start of the next copy or
	   the end of the input will be emitted as literal bytes. */
	if block_size >= kInputMarginBytes {
		var len_limit uint = brotli_min_size_t(block_size-min_match, input_size-kInputMarginBytes)
		var ip_limit int = int(len_limit)
		/* For the last block, we need to keep a 16 bytes margin so that we can be
		   sure that all distances are at most window size - 16.
		   For all other blocks, we only need to keep a margin of 5 bytes so that
		   we don't go over the block size with a copy. */

		var next_hash uint32
		ip++
		for next_hash = hash1(input[ip:], shift, min_match); ; {
			var skip uint32 = 32
			var next_ip int = ip
			/* Step 1: Scan forward in the input looking for a 6-byte-long match.
			   If we get close to exhausting the input then goto emit_remainder.

			   Heuristic match skipping: If 32 bytes are scanned with no matches
			   found, start looking only at every other byte. If 32 more bytes are
			   scanned, look at every third byte, etc.. When a match is found,
			   immediately go back to looking at every byte. This is a small loss
			   (~5% performance, ~0.1% density) for compressible data due to more
			   bookkeeping, but for non-compressible data (such as JPEG) it's a huge
			   win since the compressor quickly "realizes" the data is incompressible
			   and doesn't bother looking for matches everywhere.

			   The "skip" variable keeps track of how many bytes there are since the
			   last match; dividing it by 32 (ie. right-shifting by five) gives the
			   number of bytes to move ahead for each iteration. */

			var candidate int

			assert(next_emit < ip)

		trawl:
			for {
				var hash uint32 = next_hash
				var bytes_between_hash_lookups uint32 = skip >> 5
				skip++
				ip = next_ip
				assert(hash == hash1(input[ip:], shift, min_match))
				next_ip = int(uint32(ip) + bytes_between_hash_lookups)
				if next_ip > ip_limit {
					goto emit_remainder
				}

				next_hash = hash1(input[next_ip:], shift, min_match)
				candidate = ip - last_distance
				if isMatch1(input[ip:], base_ip_ptr[candidate-base_ip:], min_match) {
					if candidate < ip {
						table[hash] = int(ip - base_ip)
						break
					}
				}

				candidate = base_ip + table[hash]
				assert(candidate >= base_ip)
				assert(candidate < ip)

				table[hash] = int(ip - base_ip)
				if isMatch1(input[ip:], base_ip_ptr[candidate-base_ip:], min_match) {
					break
				}
			}

			/* Check copy distance. If candidate is not feasible, continue search.
			   Checking is done outside of hot loop to reduce overhead. */
			if ip-candidate > maxDistance_compress_fragment {
				goto trawl
			}

			/* Step 2: Emit the found match together with the literal bytes from
			   "next_emit", and then see if we can find a next match immediately
			   afterwards. Repeat until we find no match for the input
			   without emitting some literal bytes. */
			{
				var base int = ip
				/* > 0 */
				var matched uint = min_match + findMatchLengthWithLimit(base_ip_ptr[uint(candidate-base_ip)+min_match:], input[uint(ip)+min_match:], uint(ip_end-ip)-min_match)
				var distance int = int(base - candidate)
				/* We have a 6-byte match at ip, and we need to emit bytes in
				   [next_emit, ip). */

				var insert int = int(base - next_emit)
				ip += int(matched)
				emitInsertLen(uint32(insert), commands)
				copy(*literals, input[next_emit:][:uint(insert)])
				*literals = (*literals)[insert:]
				if distance == last_distance {
					(*commands)[0] = 64
					*commands = (*commands)[1:]
				} else {
					emitDistance(uint32(distance), commands)
					last_distance = distance
				}

				emitCopyLenLastDistance(matched, commands)

				next_emit = ip
				if ip >= ip_limit {
					goto emit_remainder
				}
				{
					var input_bytes uint64
					var cur_hash uint32
					/* We could immediately start working at ip now, but to improve
					   compression we first update "table" with the hashes of some
					   positions within the last copy. */

					var prev_hash uint32
					if min_match == 4 {
						input_bytes = binary.LittleEndian.Uint64(input[ip-3:])
						cur_hash = hashBytesAtOffset(input_bytes, 3, shift, min_match)
						prev_hash = hashBytesAtOffset(input_bytes, 0, shift, min_match)
						table[prev_hash] = int(ip - base_ip - 3)
						prev_hash = hashBytesAtOffset(input_bytes, 1, shift, min_match)
						table[prev_hash] = int(ip - base_ip - 2)
						prev_hash = hashBytesAtOffset(input_bytes, 0, shift, min_match)
						table[prev_hash] = int(ip - base_ip - 1)
					} else {
						input_bytes = binary.LittleEndian.Uint64(input[ip-5:])
						prev_hash = hashBytesAtOffset(input_bytes, 0, shift, min_match)
						table[prev_hash] = int(ip - base_ip - 5)
						prev_hash = hashBytesAtOffset(input_bytes, 1, shift, min_match)
						table[prev_hash] = int(ip - base_ip - 4)
						prev_hash = hashBytesAtOffset(input_bytes, 2, shift, min_match)
						table[prev_hash] = int(ip - base_ip - 3)
						input_bytes = binary.LittleEndian.Uint64(input[ip-2:])
						cur_hash = hashBytesAtOffset(input_bytes, 2, shift, min_match)
						prev_hash = hashBytesAtOffset(input_bytes, 0, shift, min_match)
						table[prev_hash] = int(ip - base_ip - 2)
						prev_hash = hashBytesAtOffset(input_bytes, 1, shift, min_match)
						table[prev_hash] = int(ip - base_ip - 1)
					}

					candidate = base_ip + table[cur_hash]
					table[cur_hash] = int(ip - base_ip)
				}
			}

			for ip-candidate <= maxDistance_compress_fragment && isMatch1(input[ip:], base_ip_ptr[candidate-base_ip:], min_match) {
				var base int = ip
				/* We have a 6-byte match at ip, and no need to emit any
				   literal bytes prior to ip. */

				var matched uint = min_match + findMatchLengthWithLimit(base_ip_ptr[uint(candidate-base_ip)+min_match:], input[uint(ip)+min_match:], uint(ip_end-ip)-min_match)
				ip += int(matched)
				last_distance = int(base - candidate) /* > 0 */
				emitCopyLen(matched, commands)
				emitDistance(uint32(last_distance), commands)

				next_emit = ip
				if ip >= ip_limit {
					goto emit_remainder
				}
				{
					var input_bytes uint64
					var cur_hash uint32
					/* We could immediately start working at ip now, but to improve
					   compression we first update "table" with the hashes of some
					   positions within the last copy. */

					var prev_hash uint32
					if min_match == 4 {
						input_bytes = binary.LittleEndian.Uint64(input[ip-3:])
						cur_hash = hashBytesAtOffset(input_bytes, 3, shift, min_match)
						prev_hash = hashBytesAtOffset(input_bytes, 0, shift, min_match)
						table[prev_hash] = int(ip - base_ip - 3)
						prev_hash = hashBytesAtOffset(input_bytes, 1, shift, min_match)
						table[prev_hash] = int(ip - base_ip - 2)
						prev_hash = hashBytesAtOffset(input_bytes, 2, shift, min_match)
						table[prev_hash] = int(ip - base_ip - 1)
					} else {
						input_bytes = binary.LittleEndian.Uint64(input[ip-5:])
						prev_hash = hashBytesAtOffset(input_bytes, 0, shift, min_match)
						table[prev_hash] = int(ip - base_ip - 5)
						prev_hash = hashBytesAtOffset(input_bytes, 1, shift, min_match)
						table[prev_hash] = int(ip - base_ip - 4)
						prev_hash = hashBytesAtOffset(input_bytes, 2, shift, min_match)
						table[prev_hash] = int(ip - base_ip - 3)
						input_bytes = binary.LittleEndian.Uint64(input[ip-2:])
						cur_hash = hashBytesAtOffset(input_bytes, 2, shift, min_match)
						prev_hash = hashBytesAtOffset(input_bytes, 0, shift, min_match)
						table[prev_hash] = int(ip - base_ip - 2)
						prev_hash = hashBytesAtOffset(input_bytes, 1, shift, min_match)
						table[prev_hash] = int(ip - base_ip - 1)
					}

					candidate = base_ip + table[cur_hash]
					table[cur_hash] = int(ip - base_ip)
				}
			}

			ip++
			next_hash = hash1(input[ip:], shift, min_match)
		}
	}

emit_remainder:
	assert(next_emit <= ip_end)

	/* Emit the remaining bytes as literals. */
	if next_emit < ip_end {
		var insert uint32 = uint32(ip_end - next_emit)
		emitInsertLen(insert, commands)
		copy(*literals, input[next_emit:][:insert])
		*literals = (*literals)[insert:]
	}
}

var storeCommands_kNumExtraBits = [128]uint32{
	0,
	0,
	0,
	0,
	0,
	0,
	1,
	1,
	2,
	2,
	3,
	3,
	4,
	4,
	5,
	5,
	6,
	7,
	8,
	9,
	10,
	12,
	14,
	24,
	0,
	0,
	0,
	0,
	0,
	0,
	0,
	0,
	1,
	1,
	2,
	2,
	3,
	3,
	4,
	4,
	0,
	0,
	0,
	0,
	0,
	0,
	0,
	0,
	1,
	1,
	2,
	2,
	3,
	3,
	4,
	4,
	5,
	5,
	6,
	7,
	8,
	9,
	10,
	24,
	0,
	0,
	0,
	0,
	0,
	0,
	0,
	0,
	0,
	0,
	0,
	0,
	0,
	0,
	0,
	0,
	1,
	1,
	2,
	2,
	3,
	3,
	4,
	4,
	5,
	5,
	6,
	6,
	7,
	7,
	8,
	8,
	9,
	9,
	10,
	10,
	11,
	11,
	12,
	12,
	13,
	13,
	14,
	14,
	15,
	15,
	16,
	16,
	17,
	17,
	18,
	18,
	19,
	19,
	20,
	20,
	21,
	21,
	22,
	22,
	23,
	23,
	24,
	24,
}
var storeCommands_kInsertOffset = [24]uint32{
	0,
	1,
	2,
	3,
	4,
	5,
	6,
	8,
	10,
	14,
	18,
	26,
	34,
	50,
	66,
	98,
	130,
	194,
	322,
	578,
	1090,
	2114,
	6210,
	22594,
}

func storeCommands(literals []byte, num_literals uint, commands []uint32, num_commands uint, storage_ix *uint, storage []byte) {
	var lit_depths [256]byte
	var lit_bits [256]uint16
	var lit_histo = [256]uint32{0}
	var cmd_depths = [128]byte{0}
	var cmd_bits = [128]uint16{0}
	var cmd_histo = [128]uint32{0}
	var i uint
	for i = 0; i < num_literals; i++ {
		lit_histo[literals[i]]++
	}

	buildAndStoreHuffmanTreeFast(lit_histo[:], num_literals, /* max_bits = */
		8, lit_depths[:], lit_bits[:], storage_ix, storage)

	for i = 0; i < num_commands; i++ {
		var code uint32 = commands[i] & 0xFF
		assert(code < 128)
		cmd_histo[code]++
	}

	cmd_histo[1] += 1
	cmd_histo[2] += 1
	cmd_histo[64] += 1
	cmd_histo[84] += 1
	buildAndStoreCommandPrefixCode(cmd_histo[:], cmd_depths[:], cmd_bits[:], storage_ix, storage)

	for i = 0; i < num_commands; i++ {
		var cmd uint32 = commands[i]
		var code uint32 = cmd & 0xFF
		var extra uint32 = cmd >> 8
		assert(code < 128)
		writeBits(uint(cmd_depths[code]), uint64(cmd_bits[code]), storage_ix, storage)
		writeBits(uint(storeCommands_kNumExtraBits[code]), uint64(extra), storage_ix, storage)
		if code < 24 {
			var insert uint32 = storeCommands_kInsertOffset[code] + extra
			var j uint32
			for j = 0; j < insert; j++ {
				var lit byte = literals[0]
				writeBits(uint(lit_depths[lit]), uint64(lit_bits[lit]), storage_ix, storage)
				literals = literals[1:]
			}
		}
	}
}

/* Acceptable loss for uncompressible speedup is 2% */
const minRatio = 0.98

const sampleRate = 43

func shouldCompress(input []byte, input_size uint, num_literals uint) bool {
	var corpus_size float64 = float64(input_size)
	if float64(num_literals) < minRatio*corpus_size {
		return true
	} else {
		var literal_histo = [256]uint32{0}
		var max_total_bit_cost float64 = corpus_size * 8 * minRatio / sampleRate
		var i uint
		for i = 0; i < input_size; i += sampleRate {
			literal_histo[input[i]]++
		}

		return bitsEntropy(literal_histo[:], 256) < max_total_bit_cost
	}
}

func rewindBitPosition(new_storage_ix uint, storage_ix *uint, storage []byte) {
	var bitpos uint = new_storage_ix & 7
	var mask uint = (1 << bitpos) - 1
	storage[new_storage_ix>>3] &= byte(mask)
	*storage_ix = new_storage_ix
}

func emitUncompressedMetaBlock(input []byte, input_size uint, storage_ix *uint, storage []byte) {
	storeMetaBlockHeader(input_size, true, storage_ix, storage)
	*storage_ix = (*storage_ix + 7) &^ 7
	copy(storage[*storage_ix>>3:], input[:input_size])
	*storage_ix += input_size << 3
	storage[*storage_ix>>3] = 0
}

func compressFragmentTwoPassImpl(input []byte, input_size uint, is_last bool, command_buf []uint32, literal_buf []byte, table []int, table_bits uint, min_match uint, storage_ix *uint, storage []byte) {
	/* Save the start of the first block for position and distance computations.
	 */
	var base_ip []byte = input

	for input_size > 0 {
		var block_size uint = brotli_min_size_t(input_size, kCompressFragmentTwoPassBlockSize)
		var commands []uint32 = command_buf
		var literals []byte = literal_buf
		var num_literals uint
		createCommands(input, block_size, input_size, base_ip, table, table_bits, min_match, &literals, &commands)
		num_literals = uint(-cap(literals) + cap(literal_buf))
		if shouldCompress(input, block_size, num_literals) {
			var num_commands uint = uint(-cap(commands) + cap(command_buf))
			storeMetaBlockHeader(block_size, false, storage_ix, storage)

			/* No block splits, no contexts. */
			writeBits(13, 0, storage_ix, storage)

			storeCommands(literal_buf, num_literals, command_buf, num_commands, storage_ix, storage)
		} else {
			/* Since we did not find many backward references and the entropy of
			   the data is close to 8 bits, we can simply emit an uncompressed block.
			   This makes compression speed of uncompressible data about 3x faster. */
			emitUncompressedMetaBlock(input, block_size, storage_ix, storage)
		}

		input = input[block_size:]
		input_size -= block_size
	}
}

/* Compresses "input" string to the "*storage" buffer as one or more complete
   meta-blocks, and updates the "*storage_ix" bit position.

   If "is_last" is 1, emits an additional empty last meta-block.

   REQUIRES: "input_size" is greater than zero, or "is_last" is 1.
   REQUIRES: "input_size" is less or equal to maximal metablock size (1 << 24).
   REQUIRES: "command_buf" and "literal_buf" point to at least
              kCompressFragmentTwoPassBlockSize long arrays.
   REQUIRES: All elements in "table[0..table_size-1]" are initialized to zero.
   REQUIRES: "table_size" is a power of two
   OUTPUT: maximal copy distance <= |input_size|
   OUTPUT: maximal copy distance <= BROTLI_MAX_BACKWARD_LIMIT(18) */
func compressFragmentTwoPass(input []byte, input_size uint, is_last bool, command_buf []uint32, literal_buf []byte, table []int, table_size uint, storage_ix *uint, storage []byte) {
	var initial_storage_ix uint = *storage_ix
	var table_bits uint = uint(log2FloorNonZero(table_size))
	var min_match uint
	if table_bits <= 15 {
		min_match = 4
	} else {
		min_match = 6
	}
	compressFragmentTwoPassImpl(input, input_size, is_last, command_buf, literal_buf, table, table_bits, min_match, storage_ix, storage)

	/* If output is larger than single uncompressed block, rewrite it. */
	if *storage_ix-initial_storage_ix > 31+(input_size<<3) {
		rewindBitPosition(initial_storage_ix, storage_ix, storage)
		emitUncompressedMetaBlock(input, input_size, storage_ix, storage)
	}

	if is_last {
		writeBits(1, 1, storage_ix, storage) /* islast */
		writeBits(1, 1, storage_ix, storage) /* isempty */
		*storage_ix = (*storage_ix + 7) &^ 7
	}
}