huffman_bit_writer.go 23.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package flate

import (
	"io"
)

const (
	// The largest offset code.
	offsetCodeCount = 30

	// The special code used to mark the end of a block.
	endBlockMarker = 256

	// The first length code.
	lengthCodesStart = 257

	// The number of codegen codes.
	codegenCodeCount = 19
	badCode          = 255

	// bufferFlushSize indicates the buffer size
	// after which bytes are flushed to the writer.
	// Should preferably be a multiple of 6, since
	// we accumulate 6 bytes between writes to the buffer.
	bufferFlushSize = 240

	// bufferSize is the actual output byte buffer size.
	// It must have additional headroom for a flush
	// which can contain up to 8 bytes.
	bufferSize = bufferFlushSize + 8
)

// The number of extra bits needed by length code X - LENGTH_CODES_START.
var lengthExtraBits = [32]int8{
	/* 257 */ 0, 0, 0,
	/* 260 */ 0, 0, 0, 0, 0, 1, 1, 1, 1, 2,
	/* 270 */ 2, 2, 2, 3, 3, 3, 3, 4, 4, 4,
	/* 280 */ 4, 5, 5, 5, 5, 0,
}

// The length indicated by length code X - LENGTH_CODES_START.
var lengthBase = [32]uint8{
	0, 1, 2, 3, 4, 5, 6, 7, 8, 10,
	12, 14, 16, 20, 24, 28, 32, 40, 48, 56,
	64, 80, 96, 112, 128, 160, 192, 224, 255,
}

// offset code word extra bits.
var offsetExtraBits = [64]int8{
	0, 0, 0, 0, 1, 1, 2, 2, 3, 3,
	4, 4, 5, 5, 6, 6, 7, 7, 8, 8,
	9, 9, 10, 10, 11, 11, 12, 12, 13, 13,
	/* extended window */
	14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20,
}

var offsetBase = [64]uint32{
	/* normal deflate */
	0x000000, 0x000001, 0x000002, 0x000003, 0x000004,
	0x000006, 0x000008, 0x00000c, 0x000010, 0x000018,
	0x000020, 0x000030, 0x000040, 0x000060, 0x000080,
	0x0000c0, 0x000100, 0x000180, 0x000200, 0x000300,
	0x000400, 0x000600, 0x000800, 0x000c00, 0x001000,
	0x001800, 0x002000, 0x003000, 0x004000, 0x006000,

	/* extended window */
	0x008000, 0x00c000, 0x010000, 0x018000, 0x020000,
	0x030000, 0x040000, 0x060000, 0x080000, 0x0c0000,
	0x100000, 0x180000, 0x200000, 0x300000,
}

// The odd order in which the codegen code sizes are written.
var codegenOrder = []uint32{16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15}

type huffmanBitWriter struct {
	// writer is the underlying writer.
	// Do not use it directly; use the write method, which ensures
	// that Write errors are sticky.
	writer io.Writer

	// Data waiting to be written is bytes[0:nbytes]
	// and then the low nbits of bits.
	bits            uint64
	nbits           uint16
	nbytes          uint8
	literalEncoding *huffmanEncoder
	offsetEncoding  *huffmanEncoder
	codegenEncoding *huffmanEncoder
	err             error
	lastHeader      int
	// Set between 0 (reused block can be up to 2x the size)
	logNewTablePenalty uint
	lastHuffMan        bool
	bytes              [256]byte
	literalFreq        [lengthCodesStart + 32]uint16
	offsetFreq         [32]uint16
	codegenFreq        [codegenCodeCount]uint16

	// codegen must have an extra space for the final symbol.
	codegen [literalCount + offsetCodeCount + 1]uint8
}

// Huffman reuse.
//
// The huffmanBitWriter supports reusing huffman tables and thereby combining block sections.
//
// This is controlled by several variables:
//
// If lastHeader is non-zero the Huffman table can be reused.
// This also indicates that a Huffman table has been generated that can output all
// possible symbols.
// It also indicates that an EOB has not yet been emitted, so if a new tabel is generated
// an EOB with the previous table must be written.
//
// If lastHuffMan is set, a table for outputting literals has been generated and offsets are invalid.
//
// An incoming block estimates the output size of a new table using a 'fresh' by calculating the
// optimal size and adding a penalty in 'logNewTablePenalty'.
// A Huffman table is not optimal, which is why we add a penalty, and generating a new table
// is slower both for compression and decompression.

func newHuffmanBitWriter(w io.Writer) *huffmanBitWriter {
	return &huffmanBitWriter{
		writer:          w,
		literalEncoding: newHuffmanEncoder(literalCount),
		codegenEncoding: newHuffmanEncoder(codegenCodeCount),
		offsetEncoding:  newHuffmanEncoder(offsetCodeCount),
	}
}

func (w *huffmanBitWriter) reset(writer io.Writer) {
	w.writer = writer
	w.bits, w.nbits, w.nbytes, w.err = 0, 0, 0, nil
	w.lastHeader = 0
	w.lastHuffMan = false
}

func (w *huffmanBitWriter) canReuse(t *tokens) (offsets, lits bool) {
	offsets, lits = true, true
	a := t.offHist[:offsetCodeCount]
	b := w.offsetFreq[:len(a)]
	for i := range a {
		if b[i] == 0 && a[i] != 0 {
			offsets = false
			break
		}
	}

	a = t.extraHist[:literalCount-256]
	b = w.literalFreq[256:literalCount]
	b = b[:len(a)]
	for i := range a {
		if b[i] == 0 && a[i] != 0 {
			lits = false
			break
		}
	}
	if lits {
		a = t.litHist[:]
		b = w.literalFreq[:len(a)]
		for i := range a {
			if b[i] == 0 && a[i] != 0 {
				lits = false
				break
			}
		}
	}
	return
}

func (w *huffmanBitWriter) flush() {
	if w.err != nil {
		w.nbits = 0
		return
	}
	if w.lastHeader > 0 {
		// We owe an EOB
		w.writeCode(w.literalEncoding.codes[endBlockMarker])
		w.lastHeader = 0
	}
	n := w.nbytes
	for w.nbits != 0 {
		w.bytes[n] = byte(w.bits)
		w.bits >>= 8
		if w.nbits > 8 { // Avoid underflow
			w.nbits -= 8
		} else {
			w.nbits = 0
		}
		n++
	}
	w.bits = 0
	w.write(w.bytes[:n])
	w.nbytes = 0
}

func (w *huffmanBitWriter) write(b []byte) {
	if w.err != nil {
		return
	}
	_, w.err = w.writer.Write(b)
}

func (w *huffmanBitWriter) writeBits(b int32, nb uint16) {
	w.bits |= uint64(b) << (w.nbits & 63)
	w.nbits += nb
	if w.nbits >= 48 {
		w.writeOutBits()
	}
}

func (w *huffmanBitWriter) writeBytes(bytes []byte) {
	if w.err != nil {
		return
	}
	n := w.nbytes
	if w.nbits&7 != 0 {
		w.err = InternalError("writeBytes with unfinished bits")
		return
	}
	for w.nbits != 0 {
		w.bytes[n] = byte(w.bits)
		w.bits >>= 8
		w.nbits -= 8
		n++
	}
	if n != 0 {
		w.write(w.bytes[:n])
	}
	w.nbytes = 0
	w.write(bytes)
}

// RFC 1951 3.2.7 specifies a special run-length encoding for specifying
// the literal and offset lengths arrays (which are concatenated into a single
// array).  This method generates that run-length encoding.
//
// The result is written into the codegen array, and the frequencies
// of each code is written into the codegenFreq array.
// Codes 0-15 are single byte codes. Codes 16-18 are followed by additional
// information. Code badCode is an end marker
//
//  numLiterals      The number of literals in literalEncoding
//  numOffsets       The number of offsets in offsetEncoding
//  litenc, offenc   The literal and offset encoder to use
func (w *huffmanBitWriter) generateCodegen(numLiterals int, numOffsets int, litEnc, offEnc *huffmanEncoder) {
	for i := range w.codegenFreq {
		w.codegenFreq[i] = 0
	}
	// Note that we are using codegen both as a temporary variable for holding
	// a copy of the frequencies, and as the place where we put the result.
	// This is fine because the output is always shorter than the input used
	// so far.
	codegen := w.codegen[:] // cache
	// Copy the concatenated code sizes to codegen. Put a marker at the end.
	cgnl := codegen[:numLiterals]
	for i := range cgnl {
		cgnl[i] = uint8(litEnc.codes[i].len)
	}

	cgnl = codegen[numLiterals : numLiterals+numOffsets]
	for i := range cgnl {
		cgnl[i] = uint8(offEnc.codes[i].len)
	}
	codegen[numLiterals+numOffsets] = badCode

	size := codegen[0]
	count := 1
	outIndex := 0
	for inIndex := 1; size != badCode; inIndex++ {
		// INVARIANT: We have seen "count" copies of size that have not yet
		// had output generated for them.
		nextSize := codegen[inIndex]
		if nextSize == size {
			count++
			continue
		}
		// We need to generate codegen indicating "count" of size.
		if size != 0 {
			codegen[outIndex] = size
			outIndex++
			w.codegenFreq[size]++
			count--
			for count >= 3 {
				n := 6
				if n > count {
					n = count
				}
				codegen[outIndex] = 16
				outIndex++
				codegen[outIndex] = uint8(n - 3)
				outIndex++
				w.codegenFreq[16]++
				count -= n
			}
		} else {
			for count >= 11 {
				n := 138
				if n > count {
					n = count
				}
				codegen[outIndex] = 18
				outIndex++
				codegen[outIndex] = uint8(n - 11)
				outIndex++
				w.codegenFreq[18]++
				count -= n
			}
			if count >= 3 {
				// count >= 3 && count <= 10
				codegen[outIndex] = 17
				outIndex++
				codegen[outIndex] = uint8(count - 3)
				outIndex++
				w.codegenFreq[17]++
				count = 0
			}
		}
		count--
		for ; count >= 0; count-- {
			codegen[outIndex] = size
			outIndex++
			w.codegenFreq[size]++
		}
		// Set up invariant for next time through the loop.
		size = nextSize
		count = 1
	}
	// Marker indicating the end of the codegen.
	codegen[outIndex] = badCode
}

func (w *huffmanBitWriter) codegens() int {
	numCodegens := len(w.codegenFreq)
	for numCodegens > 4 && w.codegenFreq[codegenOrder[numCodegens-1]] == 0 {
		numCodegens--
	}
	return numCodegens
}

func (w *huffmanBitWriter) headerSize() (size, numCodegens int) {
	numCodegens = len(w.codegenFreq)
	for numCodegens > 4 && w.codegenFreq[codegenOrder[numCodegens-1]] == 0 {
		numCodegens--
	}
	return 3 + 5 + 5 + 4 + (3 * numCodegens) +
		w.codegenEncoding.bitLength(w.codegenFreq[:]) +
		int(w.codegenFreq[16])*2 +
		int(w.codegenFreq[17])*3 +
		int(w.codegenFreq[18])*7, numCodegens
}

// dynamicSize returns the size of dynamically encoded data in bits.
func (w *huffmanBitWriter) dynamicReuseSize(litEnc, offEnc *huffmanEncoder) (size int) {
	size = litEnc.bitLength(w.literalFreq[:]) +
		offEnc.bitLength(w.offsetFreq[:])
	return size
}

// dynamicSize returns the size of dynamically encoded data in bits.
func (w *huffmanBitWriter) dynamicSize(litEnc, offEnc *huffmanEncoder, extraBits int) (size, numCodegens int) {
	header, numCodegens := w.headerSize()
	size = header +
		litEnc.bitLength(w.literalFreq[:]) +
		offEnc.bitLength(w.offsetFreq[:]) +
		extraBits
	return size, numCodegens
}

// extraBitSize will return the number of bits that will be written
// as "extra" bits on matches.
func (w *huffmanBitWriter) extraBitSize() int {
	total := 0
	for i, n := range w.literalFreq[257:literalCount] {
		total += int(n) * int(lengthExtraBits[i&31])
	}
	for i, n := range w.offsetFreq[:offsetCodeCount] {
		total += int(n) * int(offsetExtraBits[i&31])
	}
	return total
}

// fixedSize returns the size of dynamically encoded data in bits.
func (w *huffmanBitWriter) fixedSize(extraBits int) int {
	return 3 +
		fixedLiteralEncoding.bitLength(w.literalFreq[:]) +
		fixedOffsetEncoding.bitLength(w.offsetFreq[:]) +
		extraBits
}

// storedSize calculates the stored size, including header.
// The function returns the size in bits and whether the block
// fits inside a single block.
func (w *huffmanBitWriter) storedSize(in []byte) (int, bool) {
	if in == nil {
		return 0, false
	}
	if len(in) <= maxStoreBlockSize {
		return (len(in) + 5) * 8, true
	}
	return 0, false
}

func (w *huffmanBitWriter) writeCode(c hcode) {
	// The function does not get inlined if we "& 63" the shift.
	w.bits |= uint64(c.code) << w.nbits
	w.nbits += c.len
	if w.nbits >= 48 {
		w.writeOutBits()
	}
}

// writeOutBits will write bits to the buffer.
func (w *huffmanBitWriter) writeOutBits() {
	bits := w.bits
	w.bits >>= 48
	w.nbits -= 48
	n := w.nbytes
	w.bytes[n] = byte(bits)
	w.bytes[n+1] = byte(bits >> 8)
	w.bytes[n+2] = byte(bits >> 16)
	w.bytes[n+3] = byte(bits >> 24)
	w.bytes[n+4] = byte(bits >> 32)
	w.bytes[n+5] = byte(bits >> 40)
	n += 6
	if n >= bufferFlushSize {
		if w.err != nil {
			n = 0
			return
		}
		w.write(w.bytes[:n])
		n = 0
	}
	w.nbytes = n
}

// Write the header of a dynamic Huffman block to the output stream.
//
//  numLiterals  The number of literals specified in codegen
//  numOffsets   The number of offsets specified in codegen
//  numCodegens  The number of codegens used in codegen
func (w *huffmanBitWriter) writeDynamicHeader(numLiterals int, numOffsets int, numCodegens int, isEof bool) {
	if w.err != nil {
		return
	}
	var firstBits int32 = 4
	if isEof {
		firstBits = 5
	}
	w.writeBits(firstBits, 3)
	w.writeBits(int32(numLiterals-257), 5)
	w.writeBits(int32(numOffsets-1), 5)
	w.writeBits(int32(numCodegens-4), 4)

	for i := 0; i < numCodegens; i++ {
		value := uint(w.codegenEncoding.codes[codegenOrder[i]].len)
		w.writeBits(int32(value), 3)
	}

	i := 0
	for {
		var codeWord = uint32(w.codegen[i])
		i++
		if codeWord == badCode {
			break
		}
		w.writeCode(w.codegenEncoding.codes[codeWord])

		switch codeWord {
		case 16:
			w.writeBits(int32(w.codegen[i]), 2)
			i++
		case 17:
			w.writeBits(int32(w.codegen[i]), 3)
			i++
		case 18:
			w.writeBits(int32(w.codegen[i]), 7)
			i++
		}
	}
}

// writeStoredHeader will write a stored header.
// If the stored block is only used for EOF,
// it is replaced with a fixed huffman block.
func (w *huffmanBitWriter) writeStoredHeader(length int, isEof bool) {
	if w.err != nil {
		return
	}
	if w.lastHeader > 0 {
		// We owe an EOB
		w.writeCode(w.literalEncoding.codes[endBlockMarker])
		w.lastHeader = 0
	}

	// To write EOF, use a fixed encoding block. 10 bits instead of 5 bytes.
	if length == 0 && isEof {
		w.writeFixedHeader(isEof)
		// EOB: 7 bits, value: 0
		w.writeBits(0, 7)
		w.flush()
		return
	}

	var flag int32
	if isEof {
		flag = 1
	}
	w.writeBits(flag, 3)
	w.flush()
	w.writeBits(int32(length), 16)
	w.writeBits(int32(^uint16(length)), 16)
}

func (w *huffmanBitWriter) writeFixedHeader(isEof bool) {
	if w.err != nil {
		return
	}
	if w.lastHeader > 0 {
		// We owe an EOB
		w.writeCode(w.literalEncoding.codes[endBlockMarker])
		w.lastHeader = 0
	}

	// Indicate that we are a fixed Huffman block
	var value int32 = 2
	if isEof {
		value = 3
	}
	w.writeBits(value, 3)
}

// writeBlock will write a block of tokens with the smallest encoding.
// The original input can be supplied, and if the huffman encoded data
// is larger than the original bytes, the data will be written as a
// stored block.
// If the input is nil, the tokens will always be Huffman encoded.
func (w *huffmanBitWriter) writeBlock(tokens *tokens, eof bool, input []byte) {
	if w.err != nil {
		return
	}

	tokens.AddEOB()
	if w.lastHeader > 0 {
		// We owe an EOB
		w.writeCode(w.literalEncoding.codes[endBlockMarker])
		w.lastHeader = 0
	}
	numLiterals, numOffsets := w.indexTokens(tokens, false)
	w.generate(tokens)
	var extraBits int
	storedSize, storable := w.storedSize(input)
	if storable {
		extraBits = w.extraBitSize()
	}

	// Figure out smallest code.
	// Fixed Huffman baseline.
	var literalEncoding = fixedLiteralEncoding
	var offsetEncoding = fixedOffsetEncoding
	var size = w.fixedSize(extraBits)

	// Dynamic Huffman?
	var numCodegens int

	// Generate codegen and codegenFrequencies, which indicates how to encode
	// the literalEncoding and the offsetEncoding.
	w.generateCodegen(numLiterals, numOffsets, w.literalEncoding, w.offsetEncoding)
	w.codegenEncoding.generate(w.codegenFreq[:], 7)
	dynamicSize, numCodegens := w.dynamicSize(w.literalEncoding, w.offsetEncoding, extraBits)

	if dynamicSize < size {
		size = dynamicSize
		literalEncoding = w.literalEncoding
		offsetEncoding = w.offsetEncoding
	}

	// Stored bytes?
	if storable && storedSize < size {
		w.writeStoredHeader(len(input), eof)
		w.writeBytes(input)
		return
	}

	// Huffman.
	if literalEncoding == fixedLiteralEncoding {
		w.writeFixedHeader(eof)
	} else {
		w.writeDynamicHeader(numLiterals, numOffsets, numCodegens, eof)
	}

	// Write the tokens.
	w.writeTokens(tokens.Slice(), literalEncoding.codes, offsetEncoding.codes)
}

// writeBlockDynamic encodes a block using a dynamic Huffman table.
// This should be used if the symbols used have a disproportionate
// histogram distribution.
// If input is supplied and the compression savings are below 1/16th of the
// input size the block is stored.
func (w *huffmanBitWriter) writeBlockDynamic(tokens *tokens, eof bool, input []byte, sync bool) {
	if w.err != nil {
		return
	}

	sync = sync || eof
	if sync {
		tokens.AddEOB()
	}

	// We cannot reuse pure huffman table, and must mark as EOF.
	if (w.lastHuffMan || eof) && w.lastHeader > 0 {
		// We will not try to reuse.
		w.writeCode(w.literalEncoding.codes[endBlockMarker])
		w.lastHeader = 0
		w.lastHuffMan = false
	}
	if !sync {
		tokens.Fill()
	}
	numLiterals, numOffsets := w.indexTokens(tokens, !sync)

	var size int
	// Check if we should reuse.
	if w.lastHeader > 0 {
		// Estimate size for using a new table.
		// Use the previous header size as the best estimate.
		newSize := w.lastHeader + tokens.EstimatedBits()
		newSize += newSize >> w.logNewTablePenalty

		// The estimated size is calculated as an optimal table.
		// We add a penalty to make it more realistic and re-use a bit more.
		reuseSize := w.dynamicReuseSize(w.literalEncoding, w.offsetEncoding) + w.extraBitSize()

		// Check if a new table is better.
		if newSize < reuseSize {
			// Write the EOB we owe.
			w.writeCode(w.literalEncoding.codes[endBlockMarker])
			size = newSize
			w.lastHeader = 0
		} else {
			size = reuseSize
		}
		// Check if we get a reasonable size decrease.
		if ssize, storable := w.storedSize(input); storable && ssize < (size+size>>4) {
			w.writeStoredHeader(len(input), eof)
			w.writeBytes(input)
			w.lastHeader = 0
			return
		}
	}

	// We want a new block/table
	if w.lastHeader == 0 {
		w.generate(tokens)
		// Generate codegen and codegenFrequencies, which indicates how to encode
		// the literalEncoding and the offsetEncoding.
		w.generateCodegen(numLiterals, numOffsets, w.literalEncoding, w.offsetEncoding)
		w.codegenEncoding.generate(w.codegenFreq[:], 7)
		var numCodegens int
		size, numCodegens = w.dynamicSize(w.literalEncoding, w.offsetEncoding, w.extraBitSize())
		// Store bytes, if we don't get a reasonable improvement.
		if ssize, storable := w.storedSize(input); storable && ssize < (size+size>>4) {
			w.writeStoredHeader(len(input), eof)
			w.writeBytes(input)
			w.lastHeader = 0
			return
		}

		// Write Huffman table.
		w.writeDynamicHeader(numLiterals, numOffsets, numCodegens, eof)
		w.lastHeader, _ = w.headerSize()
		w.lastHuffMan = false
	}

	if sync {
		w.lastHeader = 0
	}
	// Write the tokens.
	w.writeTokens(tokens.Slice(), w.literalEncoding.codes, w.offsetEncoding.codes)
}

// indexTokens indexes a slice of tokens, and updates
// literalFreq and offsetFreq, and generates literalEncoding
// and offsetEncoding.
// The number of literal and offset tokens is returned.
func (w *huffmanBitWriter) indexTokens(t *tokens, filled bool) (numLiterals, numOffsets int) {
	copy(w.literalFreq[:], t.litHist[:])
	copy(w.literalFreq[256:], t.extraHist[:])
	copy(w.offsetFreq[:], t.offHist[:offsetCodeCount])

	if t.n == 0 {
		return
	}
	if filled {
		return maxNumLit, maxNumDist
	}
	// get the number of literals
	numLiterals = len(w.literalFreq)
	for w.literalFreq[numLiterals-1] == 0 {
		numLiterals--
	}
	// get the number of offsets
	numOffsets = len(w.offsetFreq)
	for numOffsets > 0 && w.offsetFreq[numOffsets-1] == 0 {
		numOffsets--
	}
	if numOffsets == 0 {
		// We haven't found a single match. If we want to go with the dynamic encoding,
		// we should count at least one offset to be sure that the offset huffman tree could be encoded.
		w.offsetFreq[0] = 1
		numOffsets = 1
	}
	return
}

func (w *huffmanBitWriter) generate(t *tokens) {
	w.literalEncoding.generate(w.literalFreq[:literalCount], 15)
	w.offsetEncoding.generate(w.offsetFreq[:offsetCodeCount], 15)
}

// writeTokens writes a slice of tokens to the output.
// codes for literal and offset encoding must be supplied.
func (w *huffmanBitWriter) writeTokens(tokens []token, leCodes, oeCodes []hcode) {
	if w.err != nil {
		return
	}
	if len(tokens) == 0 {
		return
	}

	// Only last token should be endBlockMarker.
	var deferEOB bool
	if tokens[len(tokens)-1] == endBlockMarker {
		tokens = tokens[:len(tokens)-1]
		deferEOB = true
	}

	// Create slices up to the next power of two to avoid bounds checks.
	lits := leCodes[:256]
	offs := oeCodes[:32]
	lengths := leCodes[lengthCodesStart:]
	lengths = lengths[:32]
	for _, t := range tokens {
		if t < matchType {
			w.writeCode(lits[t.literal()])
			continue
		}

		// Write the length
		length := t.length()
		lengthCode := lengthCode(length)
		if false {
			w.writeCode(lengths[lengthCode&31])
		} else {
			// inlined
			c := lengths[lengthCode&31]
			w.bits |= uint64(c.code) << (w.nbits & 63)
			w.nbits += c.len
			if w.nbits >= 48 {
				w.writeOutBits()
			}
		}

		extraLengthBits := uint16(lengthExtraBits[lengthCode&31])
		if extraLengthBits > 0 {
			extraLength := int32(length - lengthBase[lengthCode&31])
			w.writeBits(extraLength, extraLengthBits)
		}
		// Write the offset
		offset := t.offset()
		offsetCode := offsetCode(offset)
		if false {
			w.writeCode(offs[offsetCode&31])
		} else {
			// inlined
			c := offs[offsetCode&31]
			w.bits |= uint64(c.code) << (w.nbits & 63)
			w.nbits += c.len
			if w.nbits >= 48 {
				w.writeOutBits()
			}
		}
		extraOffsetBits := uint16(offsetExtraBits[offsetCode&63])
		if extraOffsetBits > 0 {
			extraOffset := int32(offset - offsetBase[offsetCode&63])
			w.writeBits(extraOffset, extraOffsetBits)
		}
	}
	if deferEOB {
		w.writeCode(leCodes[endBlockMarker])
	}
}

// huffOffset is a static offset encoder used for huffman only encoding.
// It can be reused since we will not be encoding offset values.
var huffOffset *huffmanEncoder

func init() {
	w := newHuffmanBitWriter(nil)
	w.offsetFreq[0] = 1
	huffOffset = newHuffmanEncoder(offsetCodeCount)
	huffOffset.generate(w.offsetFreq[:offsetCodeCount], 15)
}

// writeBlockHuff encodes a block of bytes as either
// Huffman encoded literals or uncompressed bytes if the
// results only gains very little from compression.
func (w *huffmanBitWriter) writeBlockHuff(eof bool, input []byte, sync bool) {
	if w.err != nil {
		return
	}

	// Clear histogram
	for i := range w.literalFreq[:] {
		w.literalFreq[i] = 0
	}
	if !w.lastHuffMan {
		for i := range w.offsetFreq[:] {
			w.offsetFreq[i] = 0
		}
	}

	// Add everything as literals
	// We have to estimate the header size.
	// Assume header is around 70 bytes:
	// https://stackoverflow.com/a/25454430
	const guessHeaderSizeBits = 70 * 8
	estBits, estExtra := histogramSize(input, w.literalFreq[:], !eof && !sync)
	estBits += w.lastHeader + 15
	if w.lastHeader == 0 {
		estBits += guessHeaderSizeBits
	}
	estBits += estBits >> w.logNewTablePenalty

	// Store bytes, if we don't get a reasonable improvement.
	ssize, storable := w.storedSize(input)
	if storable && ssize < estBits {
		w.writeStoredHeader(len(input), eof)
		w.writeBytes(input)
		return
	}

	if w.lastHeader > 0 {
		reuseSize := w.literalEncoding.bitLength(w.literalFreq[:256])
		estBits += estExtra

		if estBits < reuseSize {
			// We owe an EOB
			w.writeCode(w.literalEncoding.codes[endBlockMarker])
			w.lastHeader = 0
		}
	}

	const numLiterals = endBlockMarker + 1
	const numOffsets = 1
	if w.lastHeader == 0 {
		w.literalFreq[endBlockMarker] = 1
		w.literalEncoding.generate(w.literalFreq[:numLiterals], 15)

		// Generate codegen and codegenFrequencies, which indicates how to encode
		// the literalEncoding and the offsetEncoding.
		w.generateCodegen(numLiterals, numOffsets, w.literalEncoding, huffOffset)
		w.codegenEncoding.generate(w.codegenFreq[:], 7)
		numCodegens := w.codegens()

		// Huffman.
		w.writeDynamicHeader(numLiterals, numOffsets, numCodegens, eof)
		w.lastHuffMan = true
		w.lastHeader, _ = w.headerSize()
	}

	encoding := w.literalEncoding.codes[:257]
	for _, t := range input {
		// Bitwriting inlined, ~30% speedup
		c := encoding[t]
		w.bits |= uint64(c.code) << ((w.nbits) & 63)
		w.nbits += c.len
		if w.nbits >= 48 {
			bits := w.bits
			w.bits >>= 48
			w.nbits -= 48
			n := w.nbytes
			w.bytes[n] = byte(bits)
			w.bytes[n+1] = byte(bits >> 8)
			w.bytes[n+2] = byte(bits >> 16)
			w.bytes[n+3] = byte(bits >> 24)
			w.bytes[n+4] = byte(bits >> 32)
			w.bytes[n+5] = byte(bits >> 40)
			n += 6
			if n >= bufferFlushSize {
				if w.err != nil {
					n = 0
					return
				}
				w.write(w.bytes[:n])
				n = 0
			}
			w.nbytes = n
		}
	}
	if eof || sync {
		w.writeCode(encoding[endBlockMarker])
		w.lastHeader = 0
		w.lastHuffMan = false
	}
}