bit_cost.go 10.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
package brotli

/* Copyright 2013 Google Inc. All Rights Reserved.

   Distributed under MIT license.
   See file LICENSE for detail or copy at https://opensource.org/licenses/MIT
*/

/* Functions to estimate the bit cost of Huffman trees. */
func shannonEntropy(population []uint32, size uint, total *uint) float64 {
	var sum uint = 0
	var retval float64 = 0
	var population_end []uint32 = population[size:]
	var p uint
	for -cap(population) < -cap(population_end) {
		p = uint(population[0])
		population = population[1:]
		sum += p
		retval -= float64(p) * fastLog2(p)
	}

	if sum != 0 {
		retval += float64(sum) * fastLog2(sum)
	}
	*total = sum
	return retval
}

func bitsEntropy(population []uint32, size uint) float64 {
	var sum uint
	var retval float64 = shannonEntropy(population, size, &sum)
	if retval < float64(sum) {
		/* At least one bit per literal is needed. */
		retval = float64(sum)
	}

	return retval
}

const kOneSymbolHistogramCost float64 = 12
const kTwoSymbolHistogramCost float64 = 20
const kThreeSymbolHistogramCost float64 = 28
const kFourSymbolHistogramCost float64 = 37

func populationCostLiteral(histogram *histogramLiteral) float64 {
	var data_size uint = histogramDataSizeLiteral()
	var count int = 0
	var s [5]uint
	var bits float64 = 0.0
	var i uint
	if histogram.total_count_ == 0 {
		return kOneSymbolHistogramCost
	}

	for i = 0; i < data_size; i++ {
		if histogram.data_[i] > 0 {
			s[count] = i
			count++
			if count > 4 {
				break
			}
		}
	}

	if count == 1 {
		return kOneSymbolHistogramCost
	}

	if count == 2 {
		return kTwoSymbolHistogramCost + float64(histogram.total_count_)
	}

	if count == 3 {
		var histo0 uint32 = histogram.data_[s[0]]
		var histo1 uint32 = histogram.data_[s[1]]
		var histo2 uint32 = histogram.data_[s[2]]
		var histomax uint32 = brotli_max_uint32_t(histo0, brotli_max_uint32_t(histo1, histo2))
		return kThreeSymbolHistogramCost + 2*(float64(histo0)+float64(histo1)+float64(histo2)) - float64(histomax)
	}

	if count == 4 {
		var histo [4]uint32
		var h23 uint32
		var histomax uint32
		for i = 0; i < 4; i++ {
			histo[i] = histogram.data_[s[i]]
		}

		/* Sort */
		for i = 0; i < 4; i++ {
			var j uint
			for j = i + 1; j < 4; j++ {
				if histo[j] > histo[i] {
					var tmp uint32 = histo[j]
					histo[j] = histo[i]
					histo[i] = tmp
				}
			}
		}

		h23 = histo[2] + histo[3]
		histomax = brotli_max_uint32_t(h23, histo[0])
		return kFourSymbolHistogramCost + 3*float64(h23) + 2*(float64(histo[0])+float64(histo[1])) - float64(histomax)
	}
	{
		var max_depth uint = 1
		var depth_histo = [codeLengthCodes]uint32{0}
		/* In this loop we compute the entropy of the histogram and simultaneously
		   build a simplified histogram of the code length codes where we use the
		   zero repeat code 17, but we don't use the non-zero repeat code 16. */

		var log2total float64 = fastLog2(histogram.total_count_)
		for i = 0; i < data_size; {
			if histogram.data_[i] > 0 {
				var log2p float64 = log2total - fastLog2(uint(histogram.data_[i]))
				/* Compute -log2(P(symbol)) = -log2(count(symbol)/total_count) =
				   = log2(total_count) - log2(count(symbol)) */

				var depth uint = uint(log2p + 0.5)
				/* Approximate the bit depth by round(-log2(P(symbol))) */
				bits += float64(histogram.data_[i]) * log2p

				if depth > 15 {
					depth = 15
				}

				if depth > max_depth {
					max_depth = depth
				}

				depth_histo[depth]++
				i++
			} else {
				var reps uint32 = 1
				/* Compute the run length of zeros and add the appropriate number of 0
				   and 17 code length codes to the code length code histogram. */

				var k uint
				for k = i + 1; k < data_size && histogram.data_[k] == 0; k++ {
					reps++
				}

				i += uint(reps)
				if i == data_size {
					/* Don't add any cost for the last zero run, since these are encoded
					   only implicitly. */
					break
				}

				if reps < 3 {
					depth_histo[0] += reps
				} else {
					reps -= 2
					for reps > 0 {
						depth_histo[repeatZeroCodeLength]++

						/* Add the 3 extra bits for the 17 code length code. */
						bits += 3

						reps >>= 3
					}
				}
			}
		}

		/* Add the estimated encoding cost of the code length code histogram. */
		bits += float64(18 + 2*max_depth)

		/* Add the entropy of the code length code histogram. */
		bits += bitsEntropy(depth_histo[:], codeLengthCodes)
	}

	return bits
}

func populationCostCommand(histogram *histogramCommand) float64 {
	var data_size uint = histogramDataSizeCommand()
	var count int = 0
	var s [5]uint
	var bits float64 = 0.0
	var i uint
	if histogram.total_count_ == 0 {
		return kOneSymbolHistogramCost
	}

	for i = 0; i < data_size; i++ {
		if histogram.data_[i] > 0 {
			s[count] = i
			count++
			if count > 4 {
				break
			}
		}
	}

	if count == 1 {
		return kOneSymbolHistogramCost
	}

	if count == 2 {
		return kTwoSymbolHistogramCost + float64(histogram.total_count_)
	}

	if count == 3 {
		var histo0 uint32 = histogram.data_[s[0]]
		var histo1 uint32 = histogram.data_[s[1]]
		var histo2 uint32 = histogram.data_[s[2]]
		var histomax uint32 = brotli_max_uint32_t(histo0, brotli_max_uint32_t(histo1, histo2))
		return kThreeSymbolHistogramCost + 2*(float64(histo0)+float64(histo1)+float64(histo2)) - float64(histomax)
	}

	if count == 4 {
		var histo [4]uint32
		var h23 uint32
		var histomax uint32
		for i = 0; i < 4; i++ {
			histo[i] = histogram.data_[s[i]]
		}

		/* Sort */
		for i = 0; i < 4; i++ {
			var j uint
			for j = i + 1; j < 4; j++ {
				if histo[j] > histo[i] {
					var tmp uint32 = histo[j]
					histo[j] = histo[i]
					histo[i] = tmp
				}
			}
		}

		h23 = histo[2] + histo[3]
		histomax = brotli_max_uint32_t(h23, histo[0])
		return kFourSymbolHistogramCost + 3*float64(h23) + 2*(float64(histo[0])+float64(histo[1])) - float64(histomax)
	}
	{
		var max_depth uint = 1
		var depth_histo = [codeLengthCodes]uint32{0}
		/* In this loop we compute the entropy of the histogram and simultaneously
		   build a simplified histogram of the code length codes where we use the
		   zero repeat code 17, but we don't use the non-zero repeat code 16. */

		var log2total float64 = fastLog2(histogram.total_count_)
		for i = 0; i < data_size; {
			if histogram.data_[i] > 0 {
				var log2p float64 = log2total - fastLog2(uint(histogram.data_[i]))
				/* Compute -log2(P(symbol)) = -log2(count(symbol)/total_count) =
				   = log2(total_count) - log2(count(symbol)) */

				var depth uint = uint(log2p + 0.5)
				/* Approximate the bit depth by round(-log2(P(symbol))) */
				bits += float64(histogram.data_[i]) * log2p

				if depth > 15 {
					depth = 15
				}

				if depth > max_depth {
					max_depth = depth
				}

				depth_histo[depth]++
				i++
			} else {
				var reps uint32 = 1
				/* Compute the run length of zeros and add the appropriate number of 0
				   and 17 code length codes to the code length code histogram. */

				var k uint
				for k = i + 1; k < data_size && histogram.data_[k] == 0; k++ {
					reps++
				}

				i += uint(reps)
				if i == data_size {
					/* Don't add any cost for the last zero run, since these are encoded
					   only implicitly. */
					break
				}

				if reps < 3 {
					depth_histo[0] += reps
				} else {
					reps -= 2
					for reps > 0 {
						depth_histo[repeatZeroCodeLength]++

						/* Add the 3 extra bits for the 17 code length code. */
						bits += 3

						reps >>= 3
					}
				}
			}
		}

		/* Add the estimated encoding cost of the code length code histogram. */
		bits += float64(18 + 2*max_depth)

		/* Add the entropy of the code length code histogram. */
		bits += bitsEntropy(depth_histo[:], codeLengthCodes)
	}

	return bits
}

func populationCostDistance(histogram *histogramDistance) float64 {
	var data_size uint = histogramDataSizeDistance()
	var count int = 0
	var s [5]uint
	var bits float64 = 0.0
	var i uint
	if histogram.total_count_ == 0 {
		return kOneSymbolHistogramCost
	}

	for i = 0; i < data_size; i++ {
		if histogram.data_[i] > 0 {
			s[count] = i
			count++
			if count > 4 {
				break
			}
		}
	}

	if count == 1 {
		return kOneSymbolHistogramCost
	}

	if count == 2 {
		return kTwoSymbolHistogramCost + float64(histogram.total_count_)
	}

	if count == 3 {
		var histo0 uint32 = histogram.data_[s[0]]
		var histo1 uint32 = histogram.data_[s[1]]
		var histo2 uint32 = histogram.data_[s[2]]
		var histomax uint32 = brotli_max_uint32_t(histo0, brotli_max_uint32_t(histo1, histo2))
		return kThreeSymbolHistogramCost + 2*(float64(histo0)+float64(histo1)+float64(histo2)) - float64(histomax)
	}

	if count == 4 {
		var histo [4]uint32
		var h23 uint32
		var histomax uint32
		for i = 0; i < 4; i++ {
			histo[i] = histogram.data_[s[i]]
		}

		/* Sort */
		for i = 0; i < 4; i++ {
			var j uint
			for j = i + 1; j < 4; j++ {
				if histo[j] > histo[i] {
					var tmp uint32 = histo[j]
					histo[j] = histo[i]
					histo[i] = tmp
				}
			}
		}

		h23 = histo[2] + histo[3]
		histomax = brotli_max_uint32_t(h23, histo[0])
		return kFourSymbolHistogramCost + 3*float64(h23) + 2*(float64(histo[0])+float64(histo[1])) - float64(histomax)
	}
	{
		var max_depth uint = 1
		var depth_histo = [codeLengthCodes]uint32{0}
		/* In this loop we compute the entropy of the histogram and simultaneously
		   build a simplified histogram of the code length codes where we use the
		   zero repeat code 17, but we don't use the non-zero repeat code 16. */

		var log2total float64 = fastLog2(histogram.total_count_)
		for i = 0; i < data_size; {
			if histogram.data_[i] > 0 {
				var log2p float64 = log2total - fastLog2(uint(histogram.data_[i]))
				/* Compute -log2(P(symbol)) = -log2(count(symbol)/total_count) =
				   = log2(total_count) - log2(count(symbol)) */

				var depth uint = uint(log2p + 0.5)
				/* Approximate the bit depth by round(-log2(P(symbol))) */
				bits += float64(histogram.data_[i]) * log2p

				if depth > 15 {
					depth = 15
				}

				if depth > max_depth {
					max_depth = depth
				}

				depth_histo[depth]++
				i++
			} else {
				var reps uint32 = 1
				/* Compute the run length of zeros and add the appropriate number of 0
				   and 17 code length codes to the code length code histogram. */

				var k uint
				for k = i + 1; k < data_size && histogram.data_[k] == 0; k++ {
					reps++
				}

				i += uint(reps)
				if i == data_size {
					/* Don't add any cost for the last zero run, since these are encoded
					   only implicitly. */
					break
				}

				if reps < 3 {
					depth_histo[0] += reps
				} else {
					reps -= 2
					for reps > 0 {
						depth_histo[repeatZeroCodeLength]++

						/* Add the 3 extra bits for the 17 code length code. */
						bits += 3

						reps >>= 3
					}
				}
			}
		}

		/* Add the estimated encoding cost of the code length code histogram. */
		bits += float64(18 + 2*max_depth)

		/* Add the entropy of the code length code histogram. */
		bits += bitsEntropy(depth_histo[:], codeLengthCodes)
	}

	return bits
}