match.go 25.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package language

import (
	"errors"
	"strings"

	"golang.org/x/text/internal/language"
)

// A MatchOption configures a Matcher.
type MatchOption func(*matcher)

// PreferSameScript will, in the absence of a match, result in the first
// preferred tag with the same script as a supported tag to match this supported
// tag. The default is currently true, but this may change in the future.
func PreferSameScript(preferSame bool) MatchOption {
	return func(m *matcher) { m.preferSameScript = preferSame }
}

// TODO(v1.0.0): consider making Matcher a concrete type, instead of interface.
// There doesn't seem to be too much need for multiple types.
// Making it a concrete type allows MatchStrings to be a method, which will
// improve its discoverability.

// MatchStrings parses and matches the given strings until one of them matches
// the language in the Matcher. A string may be an Accept-Language header as
// handled by ParseAcceptLanguage. The default language is returned if no
// other language matched.
func MatchStrings(m Matcher, lang ...string) (tag Tag, index int) {
	for _, accept := range lang {
		desired, _, err := ParseAcceptLanguage(accept)
		if err != nil {
			continue
		}
		if tag, index, conf := m.Match(desired...); conf != No {
			return tag, index
		}
	}
	tag, index, _ = m.Match()
	return
}

// Matcher is the interface that wraps the Match method.
//
// Match returns the best match for any of the given tags, along with
// a unique index associated with the returned tag and a confidence
// score.
type Matcher interface {
	Match(t ...Tag) (tag Tag, index int, c Confidence)
}

// Comprehends reports the confidence score for a speaker of a given language
// to being able to comprehend the written form of an alternative language.
func Comprehends(speaker, alternative Tag) Confidence {
	_, _, c := NewMatcher([]Tag{alternative}).Match(speaker)
	return c
}

// NewMatcher returns a Matcher that matches an ordered list of preferred tags
// against a list of supported tags based on written intelligibility, closeness
// of dialect, equivalence of subtags and various other rules. It is initialized
// with the list of supported tags. The first element is used as the default
// value in case no match is found.
//
// Its Match method matches the first of the given Tags to reach a certain
// confidence threshold. The tags passed to Match should therefore be specified
// in order of preference. Extensions are ignored for matching.
//
// The index returned by the Match method corresponds to the index of the
// matched tag in t, but is augmented with the Unicode extension ('u')of the
// corresponding preferred tag. This allows user locale options to be passed
// transparently.
func NewMatcher(t []Tag, options ...MatchOption) Matcher {
	return newMatcher(t, options)
}

func (m *matcher) Match(want ...Tag) (t Tag, index int, c Confidence) {
	var tt language.Tag
	match, w, c := m.getBest(want...)
	if match != nil {
		tt, index = match.tag, match.index
	} else {
		// TODO: this should be an option
		tt = m.default_.tag
		if m.preferSameScript {
		outer:
			for _, w := range want {
				script, _ := w.Script()
				if script.scriptID == 0 {
					// Don't do anything if there is no script, such as with
					// private subtags.
					continue
				}
				for i, h := range m.supported {
					if script.scriptID == h.maxScript {
						tt, index = h.tag, i
						break outer
					}
				}
			}
		}
		// TODO: select first language tag based on script.
	}
	if w.RegionID != tt.RegionID && w.RegionID != 0 {
		if w.RegionID != 0 && tt.RegionID != 0 && tt.RegionID.Contains(w.RegionID) {
			tt.RegionID = w.RegionID
			tt.RemakeString()
		} else if r := w.RegionID.String(); len(r) == 2 {
			// TODO: also filter macro and deprecated.
			tt, _ = tt.SetTypeForKey("rg", strings.ToLower(r)+"zzzz")
		}
	}
	// Copy options from the user-provided tag into the result tag. This is hard
	// to do after the fact, so we do it here.
	// TODO: add in alternative variants to -u-va-.
	// TODO: add preferred region to -u-rg-.
	if e := w.Extensions(); len(e) > 0 {
		b := language.Builder{}
		b.SetTag(tt)
		for _, e := range e {
			b.AddExt(e)
		}
		tt = b.Make()
	}
	return makeTag(tt), index, c
}

// ErrMissingLikelyTagsData indicates no information was available
// to compute likely values of missing tags.
var ErrMissingLikelyTagsData = errors.New("missing likely tags data")

// func (t *Tag) setTagsFrom(id Tag) {
// 	t.LangID = id.LangID
// 	t.ScriptID = id.ScriptID
// 	t.RegionID = id.RegionID
// }

// Tag Matching
// CLDR defines an algorithm for finding the best match between two sets of language
// tags. The basic algorithm defines how to score a possible match and then find
// the match with the best score
// (see https://www.unicode.org/reports/tr35/#LanguageMatching).
// Using scoring has several disadvantages. The scoring obfuscates the importance of
// the various factors considered, making the algorithm harder to understand. Using
// scoring also requires the full score to be computed for each pair of tags.
//
// We will use a different algorithm which aims to have the following properties:
// - clarity on the precedence of the various selection factors, and
// - improved performance by allowing early termination of a comparison.
//
// Matching algorithm (overview)
// Input:
//   - supported: a set of supported tags
//   - default:   the default tag to return in case there is no match
//   - desired:   list of desired tags, ordered by preference, starting with
//                the most-preferred.
//
// Algorithm:
//   1) Set the best match to the lowest confidence level
//   2) For each tag in "desired":
//     a) For each tag in "supported":
//        1) compute the match between the two tags.
//        2) if the match is better than the previous best match, replace it
//           with the new match. (see next section)
//     b) if the current best match is Exact and pin is true the result will be
//        frozen to the language found thusfar, although better matches may
//        still be found for the same language.
//   3) If the best match so far is below a certain threshold, return "default".
//
// Ranking:
// We use two phases to determine whether one pair of tags are a better match
// than another pair of tags. First, we determine a rough confidence level. If the
// levels are different, the one with the highest confidence wins.
// Second, if the rough confidence levels are identical, we use a set of tie-breaker
// rules.
//
// The confidence level of matching a pair of tags is determined by finding the
// lowest confidence level of any matches of the corresponding subtags (the
// result is deemed as good as its weakest link).
// We define the following levels:
//   Exact    - An exact match of a subtag, before adding likely subtags.
//   MaxExact - An exact match of a subtag, after adding likely subtags.
//              [See Note 2].
//   High     - High level of mutual intelligibility between different subtag
//              variants.
//   Low      - Low level of mutual intelligibility between different subtag
//              variants.
//   No       - No mutual intelligibility.
//
// The following levels can occur for each type of subtag:
//   Base:    Exact, MaxExact, High, Low, No
//   Script:  Exact, MaxExact [see Note 3], Low, No
//   Region:  Exact, MaxExact, High
//   Variant: Exact, High
//   Private: Exact, No
//
// Any result with a confidence level of Low or higher is deemed a possible match.
// Once a desired tag matches any of the supported tags with a level of MaxExact
// or higher, the next desired tag is not considered (see Step 2.b).
// Note that CLDR provides languageMatching data that defines close equivalence
// classes for base languages, scripts and regions.
//
// Tie-breaking
// If we get the same confidence level for two matches, we apply a sequence of
// tie-breaking rules. The first that succeeds defines the result. The rules are
// applied in the following order.
//   1) Original language was defined and was identical.
//   2) Original region was defined and was identical.
//   3) Distance between two maximized regions was the smallest.
//   4) Original script was defined and was identical.
//   5) Distance from want tag to have tag using the parent relation [see Note 5.]
// If there is still no winner after these rules are applied, the first match
// found wins.
//
// Notes:
// [2] In practice, as matching of Exact is done in a separate phase from
//     matching the other levels, we reuse the Exact level to mean MaxExact in
//     the second phase. As a consequence, we only need the levels defined by
//     the Confidence type. The MaxExact confidence level is mapped to High in
//     the public API.
// [3] We do not differentiate between maximized script values that were derived
//     from suppressScript versus most likely tag data. We determined that in
//     ranking the two, one ranks just after the other. Moreover, the two cannot
//     occur concurrently. As a consequence, they are identical for practical
//     purposes.
// [4] In case of deprecated, macro-equivalents and legacy mappings, we assign
//     the MaxExact level to allow iw vs he to still be a closer match than
//     en-AU vs en-US, for example.
// [5] In CLDR a locale inherits fields that are unspecified for this locale
//     from its parent. Therefore, if a locale is a parent of another locale,
//     it is a strong measure for closeness, especially when no other tie
//     breaker rule applies. One could also argue it is inconsistent, for
//     example, when pt-AO matches pt (which CLDR equates with pt-BR), even
//     though its parent is pt-PT according to the inheritance rules.
//
// Implementation Details:
// There are several performance considerations worth pointing out. Most notably,
// we preprocess as much as possible (within reason) at the time of creation of a
// matcher. This includes:
//   - creating a per-language map, which includes data for the raw base language
//     and its canonicalized variant (if applicable),
//   - expanding entries for the equivalence classes defined in CLDR's
//     languageMatch data.
// The per-language map ensures that typically only a very small number of tags
// need to be considered. The pre-expansion of canonicalized subtags and
// equivalence classes reduces the amount of map lookups that need to be done at
// runtime.

// matcher keeps a set of supported language tags, indexed by language.
type matcher struct {
	default_         *haveTag
	supported        []*haveTag
	index            map[language.Language]*matchHeader
	passSettings     bool
	preferSameScript bool
}

// matchHeader has the lists of tags for exact matches and matches based on
// maximized and canonicalized tags for a given language.
type matchHeader struct {
	haveTags []*haveTag
	original bool
}

// haveTag holds a supported Tag and its maximized script and region. The maximized
// or canonicalized language is not stored as it is not needed during matching.
type haveTag struct {
	tag language.Tag

	// index of this tag in the original list of supported tags.
	index int

	// conf is the maximum confidence that can result from matching this haveTag.
	// When conf < Exact this means it was inserted after applying a CLDR equivalence rule.
	conf Confidence

	// Maximized region and script.
	maxRegion language.Region
	maxScript language.Script

	// altScript may be checked as an alternative match to maxScript. If altScript
	// matches, the confidence level for this match is Low. Theoretically there
	// could be multiple alternative scripts. This does not occur in practice.
	altScript language.Script

	// nextMax is the index of the next haveTag with the same maximized tags.
	nextMax uint16
}

func makeHaveTag(tag language.Tag, index int) (haveTag, language.Language) {
	max := tag
	if tag.LangID != 0 || tag.RegionID != 0 || tag.ScriptID != 0 {
		max, _ = canonicalize(All, max)
		max, _ = max.Maximize()
		max.RemakeString()
	}
	return haveTag{tag, index, Exact, max.RegionID, max.ScriptID, altScript(max.LangID, max.ScriptID), 0}, max.LangID
}

// altScript returns an alternative script that may match the given script with
// a low confidence.  At the moment, the langMatch data allows for at most one
// script to map to another and we rely on this to keep the code simple.
func altScript(l language.Language, s language.Script) language.Script {
	for _, alt := range matchScript {
		// TODO: also match cases where language is not the same.
		if (language.Language(alt.wantLang) == l || language.Language(alt.haveLang) == l) &&
			language.Script(alt.haveScript) == s {
			return language.Script(alt.wantScript)
		}
	}
	return 0
}

// addIfNew adds a haveTag to the list of tags only if it is a unique tag.
// Tags that have the same maximized values are linked by index.
func (h *matchHeader) addIfNew(n haveTag, exact bool) {
	h.original = h.original || exact
	// Don't add new exact matches.
	for _, v := range h.haveTags {
		if equalsRest(v.tag, n.tag) {
			return
		}
	}
	// Allow duplicate maximized tags, but create a linked list to allow quickly
	// comparing the equivalents and bail out.
	for i, v := range h.haveTags {
		if v.maxScript == n.maxScript &&
			v.maxRegion == n.maxRegion &&
			v.tag.VariantOrPrivateUseTags() == n.tag.VariantOrPrivateUseTags() {
			for h.haveTags[i].nextMax != 0 {
				i = int(h.haveTags[i].nextMax)
			}
			h.haveTags[i].nextMax = uint16(len(h.haveTags))
			break
		}
	}
	h.haveTags = append(h.haveTags, &n)
}

// header returns the matchHeader for the given language. It creates one if
// it doesn't already exist.
func (m *matcher) header(l language.Language) *matchHeader {
	if h := m.index[l]; h != nil {
		return h
	}
	h := &matchHeader{}
	m.index[l] = h
	return h
}

func toConf(d uint8) Confidence {
	if d <= 10 {
		return High
	}
	if d < 30 {
		return Low
	}
	return No
}

// newMatcher builds an index for the given supported tags and returns it as
// a matcher. It also expands the index by considering various equivalence classes
// for a given tag.
func newMatcher(supported []Tag, options []MatchOption) *matcher {
	m := &matcher{
		index:            make(map[language.Language]*matchHeader),
		preferSameScript: true,
	}
	for _, o := range options {
		o(m)
	}
	if len(supported) == 0 {
		m.default_ = &haveTag{}
		return m
	}
	// Add supported languages to the index. Add exact matches first to give
	// them precedence.
	for i, tag := range supported {
		tt := tag.tag()
		pair, _ := makeHaveTag(tt, i)
		m.header(tt.LangID).addIfNew(pair, true)
		m.supported = append(m.supported, &pair)
	}
	m.default_ = m.header(supported[0].lang()).haveTags[0]
	// Keep these in two different loops to support the case that two equivalent
	// languages are distinguished, such as iw and he.
	for i, tag := range supported {
		tt := tag.tag()
		pair, max := makeHaveTag(tt, i)
		if max != tt.LangID {
			m.header(max).addIfNew(pair, true)
		}
	}

	// update is used to add indexes in the map for equivalent languages.
	// update will only add entries to original indexes, thus not computing any
	// transitive relations.
	update := func(want, have uint16, conf Confidence) {
		if hh := m.index[language.Language(have)]; hh != nil {
			if !hh.original {
				return
			}
			hw := m.header(language.Language(want))
			for _, ht := range hh.haveTags {
				v := *ht
				if conf < v.conf {
					v.conf = conf
				}
				v.nextMax = 0 // this value needs to be recomputed
				if v.altScript != 0 {
					v.altScript = altScript(language.Language(want), v.maxScript)
				}
				hw.addIfNew(v, conf == Exact && hh.original)
			}
		}
	}

	// Add entries for languages with mutual intelligibility as defined by CLDR's
	// languageMatch data.
	for _, ml := range matchLang {
		update(ml.want, ml.have, toConf(ml.distance))
		if !ml.oneway {
			update(ml.have, ml.want, toConf(ml.distance))
		}
	}

	// Add entries for possible canonicalizations. This is an optimization to
	// ensure that only one map lookup needs to be done at runtime per desired tag.
	// First we match deprecated equivalents. If they are perfect equivalents
	// (their canonicalization simply substitutes a different language code, but
	// nothing else), the match confidence is Exact, otherwise it is High.
	for i, lm := range language.AliasMap {
		// If deprecated codes match and there is no fiddling with the script or
		// or region, we consider it an exact match.
		conf := Exact
		if language.AliasTypes[i] != language.Macro {
			if !isExactEquivalent(language.Language(lm.From)) {
				conf = High
			}
			update(lm.To, lm.From, conf)
		}
		update(lm.From, lm.To, conf)
	}
	return m
}

// getBest gets the best matching tag in m for any of the given tags, taking into
// account the order of preference of the given tags.
func (m *matcher) getBest(want ...Tag) (got *haveTag, orig language.Tag, c Confidence) {
	best := bestMatch{}
	for i, ww := range want {
		w := ww.tag()
		var max language.Tag
		// Check for exact match first.
		h := m.index[w.LangID]
		if w.LangID != 0 {
			if h == nil {
				continue
			}
			// Base language is defined.
			max, _ = canonicalize(Legacy|Deprecated|Macro, w)
			// A region that is added through canonicalization is stronger than
			// a maximized region: set it in the original (e.g. mo -> ro-MD).
			if w.RegionID != max.RegionID {
				w.RegionID = max.RegionID
			}
			// TODO: should we do the same for scripts?
			// See test case: en, sr, nl ; sh ; sr
			max, _ = max.Maximize()
		} else {
			// Base language is not defined.
			if h != nil {
				for i := range h.haveTags {
					have := h.haveTags[i]
					if equalsRest(have.tag, w) {
						return have, w, Exact
					}
				}
			}
			if w.ScriptID == 0 && w.RegionID == 0 {
				// We skip all tags matching und for approximate matching, including
				// private tags.
				continue
			}
			max, _ = w.Maximize()
			if h = m.index[max.LangID]; h == nil {
				continue
			}
		}
		pin := true
		for _, t := range want[i+1:] {
			if w.LangID == t.lang() {
				pin = false
				break
			}
		}
		// Check for match based on maximized tag.
		for i := range h.haveTags {
			have := h.haveTags[i]
			best.update(have, w, max.ScriptID, max.RegionID, pin)
			if best.conf == Exact {
				for have.nextMax != 0 {
					have = h.haveTags[have.nextMax]
					best.update(have, w, max.ScriptID, max.RegionID, pin)
				}
				return best.have, best.want, best.conf
			}
		}
	}
	if best.conf <= No {
		if len(want) != 0 {
			return nil, want[0].tag(), No
		}
		return nil, language.Tag{}, No
	}
	return best.have, best.want, best.conf
}

// bestMatch accumulates the best match so far.
type bestMatch struct {
	have            *haveTag
	want            language.Tag
	conf            Confidence
	pinnedRegion    language.Region
	pinLanguage     bool
	sameRegionGroup bool
	// Cached results from applying tie-breaking rules.
	origLang     bool
	origReg      bool
	paradigmReg  bool
	regGroupDist uint8
	origScript   bool
}

// update updates the existing best match if the new pair is considered to be a
// better match. To determine if the given pair is a better match, it first
// computes the rough confidence level. If this surpasses the current match, it
// will replace it and update the tie-breaker rule cache. If there is a tie, it
// proceeds with applying a series of tie-breaker rules. If there is no
// conclusive winner after applying the tie-breaker rules, it leaves the current
// match as the preferred match.
//
// If pin is true and have and tag are a strong match, it will henceforth only
// consider matches for this language. This corresponds to the nothing that most
// users have a strong preference for the first defined language. A user can
// still prefer a second language over a dialect of the preferred language by
// explicitly specifying dialects, e.g. "en, nl, en-GB". In this case pin should
// be false.
func (m *bestMatch) update(have *haveTag, tag language.Tag, maxScript language.Script, maxRegion language.Region, pin bool) {
	// Bail if the maximum attainable confidence is below that of the current best match.
	c := have.conf
	if c < m.conf {
		return
	}
	// Don't change the language once we already have found an exact match.
	if m.pinLanguage && tag.LangID != m.want.LangID {
		return
	}
	// Pin the region group if we are comparing tags for the same language.
	if tag.LangID == m.want.LangID && m.sameRegionGroup {
		_, sameGroup := regionGroupDist(m.pinnedRegion, have.maxRegion, have.maxScript, m.want.LangID)
		if !sameGroup {
			return
		}
	}
	if c == Exact && have.maxScript == maxScript {
		// If there is another language and then another entry of this language,
		// don't pin anything, otherwise pin the language.
		m.pinLanguage = pin
	}
	if equalsRest(have.tag, tag) {
	} else if have.maxScript != maxScript {
		// There is usually very little comprehension between different scripts.
		// In a few cases there may still be Low comprehension. This possibility
		// is pre-computed and stored in have.altScript.
		if Low < m.conf || have.altScript != maxScript {
			return
		}
		c = Low
	} else if have.maxRegion != maxRegion {
		if High < c {
			// There is usually a small difference between languages across regions.
			c = High
		}
	}

	// We store the results of the computations of the tie-breaker rules along
	// with the best match. There is no need to do the checks once we determine
	// we have a winner, but we do still need to do the tie-breaker computations.
	// We use "beaten" to keep track if we still need to do the checks.
	beaten := false // true if the new pair defeats the current one.
	if c != m.conf {
		if c < m.conf {
			return
		}
		beaten = true
	}

	// Tie-breaker rules:
	// We prefer if the pre-maximized language was specified and identical.
	origLang := have.tag.LangID == tag.LangID && tag.LangID != 0
	if !beaten && m.origLang != origLang {
		if m.origLang {
			return
		}
		beaten = true
	}

	// We prefer if the pre-maximized region was specified and identical.
	origReg := have.tag.RegionID == tag.RegionID && tag.RegionID != 0
	if !beaten && m.origReg != origReg {
		if m.origReg {
			return
		}
		beaten = true
	}

	regGroupDist, sameGroup := regionGroupDist(have.maxRegion, maxRegion, maxScript, tag.LangID)
	if !beaten && m.regGroupDist != regGroupDist {
		if regGroupDist > m.regGroupDist {
			return
		}
		beaten = true
	}

	paradigmReg := isParadigmLocale(tag.LangID, have.maxRegion)
	if !beaten && m.paradigmReg != paradigmReg {
		if !paradigmReg {
			return
		}
		beaten = true
	}

	// Next we prefer if the pre-maximized script was specified and identical.
	origScript := have.tag.ScriptID == tag.ScriptID && tag.ScriptID != 0
	if !beaten && m.origScript != origScript {
		if m.origScript {
			return
		}
		beaten = true
	}

	// Update m to the newly found best match.
	if beaten {
		m.have = have
		m.want = tag
		m.conf = c
		m.pinnedRegion = maxRegion
		m.sameRegionGroup = sameGroup
		m.origLang = origLang
		m.origReg = origReg
		m.paradigmReg = paradigmReg
		m.origScript = origScript
		m.regGroupDist = regGroupDist
	}
}

func isParadigmLocale(lang language.Language, r language.Region) bool {
	for _, e := range paradigmLocales {
		if language.Language(e[0]) == lang && (r == language.Region(e[1]) || r == language.Region(e[2])) {
			return true
		}
	}
	return false
}

// regionGroupDist computes the distance between two regions based on their
// CLDR grouping.
func regionGroupDist(a, b language.Region, script language.Script, lang language.Language) (dist uint8, same bool) {
	const defaultDistance = 4

	aGroup := uint(regionToGroups[a]) << 1
	bGroup := uint(regionToGroups[b]) << 1
	for _, ri := range matchRegion {
		if language.Language(ri.lang) == lang && (ri.script == 0 || language.Script(ri.script) == script) {
			group := uint(1 << (ri.group &^ 0x80))
			if 0x80&ri.group == 0 {
				if aGroup&bGroup&group != 0 { // Both regions are in the group.
					return ri.distance, ri.distance == defaultDistance
				}
			} else {
				if (aGroup|bGroup)&group == 0 { // Both regions are not in the group.
					return ri.distance, ri.distance == defaultDistance
				}
			}
		}
	}
	return defaultDistance, true
}

// equalsRest compares everything except the language.
func equalsRest(a, b language.Tag) bool {
	// TODO: don't include extensions in this comparison. To do this efficiently,
	// though, we should handle private tags separately.
	return a.ScriptID == b.ScriptID && a.RegionID == b.RegionID && a.VariantOrPrivateUseTags() == b.VariantOrPrivateUseTags()
}

// isExactEquivalent returns true if canonicalizing the language will not alter
// the script or region of a tag.
func isExactEquivalent(l language.Language) bool {
	for _, o := range notEquivalent {
		if o == l {
			return false
		}
	}
	return true
}

var notEquivalent []language.Language

func init() {
	// Create a list of all languages for which canonicalization may alter the
	// script or region.
	for _, lm := range language.AliasMap {
		tag := language.Tag{LangID: language.Language(lm.From)}
		if tag, _ = canonicalize(All, tag); tag.ScriptID != 0 || tag.RegionID != 0 {
			notEquivalent = append(notEquivalent, language.Language(lm.From))
		}
	}
	// Maximize undefined regions of paradigm locales.
	for i, v := range paradigmLocales {
		t := language.Tag{LangID: language.Language(v[0])}
		max, _ := t.Maximize()
		if v[1] == 0 {
			paradigmLocales[i][1] = uint16(max.RegionID)
		}
		if v[2] == 0 {
			paradigmLocales[i][2] = uint16(max.RegionID)
		}
	}
}